Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/166324
Title: Two different pathogenic mechanisms, dying-back axonal neuropathy and pancreatic senescence, are present in the YG8R mouse model of Friedreich's ataxia
Author: Mollá, Belén
Riveiro, Fátima
Bolinches-Amorós, Arantxa
Muñoz Lasso, Diana C.
Palau Martínez, Francesc
Gonzalez Cabo, Pilar
Keywords: Malalties del sistema nerviós
Pàncrees
Diabetis
Sistema nerviós simpàtic
Nervous system Diseases
Pancreas
Diabetes
Sympathetic nervous system
Issue Date: 1-Jun-2016
Publisher: The Company of Biologists
Abstract: Frataxin (FXN) deficiency causes Friedreich's ataxia (FRDA), a multisystem disorder with neurological and non-neurological symptoms. FRDA pathophysiology combines developmental and degenerative processes of dorsal root ganglia (DRG), sensory nerves, dorsal columns and other central nervous structures. A dying-back mechanism has been proposed to explain the peripheral neuropathy and neuropathology. In addition, affected individuals have non-neuronal symptoms such as diabetes mellitus or glucose intolerance. To go further in the understanding of the pathogenic mechanisms of neuropathy and diabetes associated with the disease, we have investigated the humanized mouse YG8R model of FRDA. By biochemical and histopathological studies, we observed abnormal changes involving muscle spindles, dorsal root axons and DRG neurons, but normal findings in the posterior columns and brain, which agree with the existence of a dying-back process similar to that described in individuals with FRDA. In YG8R mice, we observed a large number of degenerated axons surrounded by a sheath exhibiting enlarged adaxonal compartments or by a thin disrupted myelin sheath. Thus, both axonal damage and defects in Schwann cells might underlie the nerve pathology. In the pancreas, we found a high proportion of senescent islets of Langerhans in YG8R mice, which decreases the beta-cell number and islet mass to pathological levels, being unable to maintain normoglycemia. As a whole, these results confirm that the lack of FXN induces different pathogenic mechanisms in the nervous system and pancreas in the mouse model of FRDA: dying back of the sensory nerves, and pancreatic senescence.
Note: Reproducció del document publicat a: https://doi.org/10.1242/dmm.024273
It is part of: Disease Models & Mechanisms, 2016, vol. 9, num. 6, p. 647-657
URI: http://hdl.handle.net/2445/166324
Related resource: https://doi.org/10.1242/dmm.024273
ISSN: 1754-8403
Appears in Collections:Articles publicats en revistes (Cirurgia i Especialitats Medicoquirúrgiques)

Files in This Item:
File Description SizeFormat 
669466.pdf2.62 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons