Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/166522
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNeira, Andrea. C.-
dc.contributor.authorMartínez-Alanis, Paulina R.-
dc.contributor.authorAullón López, Gabriel-
dc.contributor.authorFlores Alamo, Marcos-
dc.contributor.authorZerón, Paulino-
dc.contributor.authorCompany, Anna-
dc.contributor.authorChen, Juan-
dc.contributor.authorKasper, Johann B.-
dc.contributor.authorBrowne, Wesley R.-
dc.contributor.authorNordlander, Ebbe-
dc.contributor.authorCastillo, Ivan-
dc.date.accessioned2020-06-23T08:50:01Z-
dc.date.available2020-06-23T08:50:01Z-
dc.date.issued2019-06-20-
dc.identifier.issn2470-1343-
dc.identifier.urihttp://hdl.handle.net/2445/166522-
dc.descriptionCorrection published on October 23, 2020 https://doi.org/10.1021/acsomega.0c04910-
dc.description.abstractThe potentially tridentate ligand bis[(1-methyl-2-benzimidazolyl)ethyl]amine (2BB) was employed to prepare copper complexes [(2BB)CuI]OTf and [(2BB)CuII(H2O)2](OTf)2 as bioinspired models of lytic polysaccharide copper-dependent monooxygenase (LPMO) enzymes. Solid-state characterization of [(2BB)CuI]OTf revealed a Cu(I) center with a T-shaped coordination environment and metric parameters in the range of those observed in reduced LPMOs. Solution characterization of [(2BB)CuII(H2O)2](OTf)2 indicates that [(2BB)CuII(H2O)2]2+ is the main species from pH 4 to 7.5; above pH 7.5, the hydroxo-bridged species [{(2BB)CuII(H2O)x}2(μ-OH)2]2+ is also present, on the basis of cyclic voltammetry and mass spectrometry. These observations imply that deprotonation of the central amine of Cu(II)-coordinated 2BB is precluded, and by extension, amine deprotonation in the histidine brace of LPMOs appears unlikely at neutral pH. The complexes [(2BB)CuI]OTf and [(2BB)CuII(H2O)2](OTf)2 act as precursors for the oxidative degradation of cellobiose as a cellulose model substrate. Spectroscopic and reactivity studies indicate that a dicopper(II) side-on peroxide complex generated from [(2BB)CuI]OTf/O2 or [(2BB)CuII(H2O)2](OTf)2/H2O2/NEt3 oxidizes cellobiose both in acetonitrile and aqueous phosphate buffer solutions, as evidenced from product analysis by high-performance liquid chromatography-mass spectrometry. The mixture of [(2BB)CuII(H2O)2](OTf)2/H2O2/NEt3 results in more extensive cellobiose degradation. Likewise, the use of both [(2BB)CuI]OTf and [(2BB)CuII(H2O)2](OTf)2 with KO2 afforded cellobiose oxidation products. In all cases, a common Cu(II) complex formulated as [(2BB)CuII(OH)(H2O)]+ was detected by mass spectrometry as the final form of the complex.-
dc.format.extent12 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Chemical Society-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1021/acsomega.9b00785-
dc.relation.ispartofACS Omega , 2019, vol. 4, p. 10729-10740-
dc.relation.urihttps://doi.org/10.1021/acsomega.9b00785-
dc.relation.urihttps://doi.org/10.1021/acsomega.0c04910-
dc.rights(c) American Chemical Society, 2019-
dc.sourceArticles publicats en revistes (Química Inorgànica i Orgànica)-
dc.subject.classificationCoure-
dc.subject.classificationEnzims-
dc.subject.classificationPolisacàrids-
dc.subject.classificationAmines-
dc.subject.otherCopper-
dc.subject.otherEnzymes-
dc.subject.otherPolysaccharides-
dc.subject.otherAmines-
dc.titleOxidative Cleavage of Cellobiose by Lytic Polysaccharide Monooxygenase (LPMO)-Inspired Copper Complexes-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec698725-
dc.identifier.idgrec710484-
dc.date.updated2020-06-23T08:50:01Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid31460171-
Appears in Collections:Articles publicats en revistes (Química Inorgànica i Orgànica)

Files in This Item:
File Description SizeFormat 
698725.pdf1.91 MBAdobe PDFView/Open
710484.pdfCorrection430.08 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.