Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/168038
Title: A KHDC3L mutation resulting in recurrent hydatidiform mole causes genome-wide DNA methylation loss in oocytes and persistent imprinting defects post-fertilisation
Author: Demond, Hannah
Anvar, Zahra
Jahromi, Bahia Namavar
Sparago, Angela
Verma, Ankit
Davari, Maryam
Calzari, Luciano
Russo, Silvia
Jahromi, Mojgan Akbarzadeh
Monk, David
Andrews, Simon
Riccio, Andrea
Kelsey, Gavin
Keywords: Epigenètica
ADN
Embriologia
Epigenetics
DNA
Embryology
Issue Date: 17-Dec-2019
Publisher: Bmc
Abstract: Background: Maternal effect mutations in the components of the subcortical maternal complex (SCMC) of the human oocyte can cause early embryonic failure, gestational abnormalities and recurrent pregnancy loss. Enigmatically, they are also associated with DNA methylation abnormalities at imprinted genes in conceptuses: in the devastating gestational abnormality biparental complete hydatidiform mole (BiCHM) or in multi-locus imprinting disease (MLID). However, the developmental timing, genomic extent and mechanistic basis of these imprinting defects are unknown. The rarity of these disorders and the possibility that methylation defects originate in oocytes have made these questions very challenging to address. Methods: Single-cell bisulphite sequencing (scBS-seq) was used to assess methylation in oocytes from a patient with BiCHM identified to be homozygous for an inactivating mutation in the human SCMC component KHDC3L. Genomewide methylation analysis of a preimplantation embryo and molar tissue from the same patient was also performed. Results: High-coverage scBS-seq libraries were obtained from five KHDC3L(c.1A>G) oocytes, which revealed a genome-wide deficit of DNA methylation compared with normal human oocytes. Importantly, germline differentially methylated regions (gDMRs) of imprinted genes were affected similarly to other sequence features that normally become methylated in oocytes, indicating no selectivity towards imprinted genes. A range of methylation losses was observed across genomic features, including gDMRs, indicating variable sensitivity to defects in the SCMC. Genome-wide analysis of a pre-implantation embryo and molar tissue from the same patient showed that following fertilisation methylation defects at imprinted genes persist, while most non-imprinted regions of the genome recover near-normal methylation post-implantation. Conclusions: We show for the first time that the integrity of the SCMC is essential for de novo methylation in the female germline. These findings have important implications for understanding the role of the SCMC in DNA methylation and for the origin of imprinting defects, for counselling affected families, and will help inform future therapeutic approaches.
Note: Reproducció del document publicat a: https://doi.org/10.1186/s13073-019-0694-y
It is part of: Genome Medicine, 2019-12-17, Vol. 11, Issue 1
URI: http://hdl.handle.net/2445/168038
Related resource: https://doi.org/10.1186/s13073-019-0694-y
Appears in Collections:Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))

Files in This Item:
File Description SizeFormat 
DemondH.pdf2.98 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons