Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/16913
Full metadata record
DC FieldValueLanguage
dc.contributor.authorD'Andrea, Carlos, 1973-cat
dc.contributor.authorChipalkatti, Jaydeepcat
dc.date.accessioned2011-03-08T09:49:05Z-
dc.date.available2011-03-08T09:49:05Z-
dc.date.issued2007-
dc.identifier.issn0010-0757-
dc.identifier.urihttp://hdl.handle.net/2445/16913-
dc.description.abstractLet ∆ denote the discriminant of the generic binary d-ic. We show that for d ≥ 3, the Jacobian ideal of ∆ is perfect of height 2. Moreover we describe its SL2-equivariant minimal resolution and the associated differential equations satisfied by ∆. A similar result is proved for the resultant of two forms of orders d, e whenever d ≥ e − 1. If Φn denotes the locus of binary forms with total root multiplicity ≥ d − n, then we show that the ideal of Φn is also perfect, and we construct a covariant which characterizes this locus. We also explain the role of the Morley form in the determinantal formula for the resultant. This relies upon a calculation which is done in the appendix by A. Abdesselam.-
dc.format.extent26 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengeng
dc.publisherUniversitat de Barcelonacat
dc.relation.isformatofReproducció del document publicat a: http://www.collectanea.ub.edu/index.php/Collectanea/article/view/4107/5023cat
dc.relation.ispartofCollectanea Mathematica, 2007, vol. 58, num. 2, p. 155-180cat
dc.rights(c) Universitat de Barcelona, 2007-
dc.subject.classificationGeometria algebraicacat
dc.subject.otherAlgebraic geometryeng
dc.titleOn the Jacobian ideal of the binary discriminant (with an appendix by Abdelmalek Abdesselam)eng
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec556672-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
556672.pdf253.33 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.