Please use this identifier to cite or link to this item:
Title: Deep learning for predictive maintenance of rolling bearings
Author: Domingo Colomer, Laia
Director/Tutor: Vitrià i Marca, Jordi
Keywords: Aprenentatge automàtic
Manteniment industrial
Tesis de màster
Machine learning
Plant maintenance
Masters theses
Issue Date: 25-Jun-2020
Abstract: [en] The monitoring of machine health has become of great importance in the industry in the recent years. Unexpected equipment failures can lead to catastrophic consequences, such as production downtime and costly equipment replacement. Rolling bearings are one of the most delicate components of rotating equipment, being a common cause of machine failures. For this reason, predictive maintenance techniques of rolling bearings are fundamental to preserve the health of a machine. In this project, we present a deep learning approach to predict bearing failures in their early development. All methodologies are data-driven, therefore they do not assume any expert knowledge on the field nor require any information about the equipment’s operating conditions. For this reason, this approach is versatile and can be used to diagnose multiple machines.
Note: Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona, Any: 2020, Tutor: Jordi Vitrià i Marca
Appears in Collections:Màster Oficial - Fonaments de la Ciència de Dades
Programari - Treballs de l'alumnat

Files in This Item:
File Description SizeFormat 
170788.pdfMemòria2.49 MBAdobe PDFView/Open
PFM_Bearing_Fault_Detection-master.zipCodi font673.71 MBzipView/Open

This item is licensed under a Creative Commons License Creative Commons