Please use this identifier to cite or link to this item:
Title: Differential metabolic activity and discovery of therapeutic targets using summarized metabolic pathway models
Author: Çubuk, Cankut
Hidalgo, Marta R.
Amadoz, Alicia
Rian, Kinza
Salavert, Francisco
Pujana Genestar, M. Ángel
Mateo González, Francesca
Herranz, Carmen
Carbonell Caballero, José
Dopazo, Joaquín
Keywords: Genòmica
Issue Date: 1-Jan-2019
Publisher: Nature Publishing Group
Abstract: In spite of the increasing availability of genomic and transcriptomic data, there is still a gap between the detection of perturbations in gene expression and the understanding of their contribution to the molecular mechanisms that ultimately account for the phenotype studied. Alterations in the metabolism are behind the initiation and progression of many diseases, including cancer. The wealth of available knowledge on metabolic processes can therefore be used to derive mechanistic models that link gene expression perturbations to changes in metabolic activity that provide relevant clues on molecular mechanisms of disease and drug modes of action (MoA). In particular, pathway modules, which recapitulate the main aspects of metabolism, are especially suitable for this type of modeling. We present Metabolizer, a web-based application that offers an intuitive, easy-to-use interactive interface to analyze differences in pathway metabolic module activities that can also be used for class prediction and in silico prediction of knock-out (KO) effects. Moreover, Metabolizer can automatically predict the optimal KO intervention for restoring a diseased phenotype. We provide different types of validations of some of the predictions made by Metabolizer. Metabolizer is a web tool that allows understanding molecular mechanisms of disease or the MoA of drugs within the context of the metabolism by using gene expression measurements. In addition, this tool automatically suggests potential therapeutic targets for individualized therapeutic interventions.
Note: Reproducció del document publicat a:
It is part of: Npj Systems Biology and Applications, 2019, vol. 5
Related resource:
Appears in Collections:Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))

Files in This Item:
File Description SizeFormat 
CubukC.pdf1.49 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons