Please use this identifier to cite or link to this item:
Title: Chloride channels in astrocytes: structure, roles in brain homeostasis and implications in disease
Author: Elorza-Vidal, Xabier
Gaitán-Peñas, Héctor
Estévez Povedano, Raúl
Keywords: Astròcits
Canals de clorur
Chloride channels
Issue Date: 1-Mar-2019
Publisher: MDPI
Abstract: Astrocytes are the most abundant cell type in the CNS (central nervous system). They exert multiple functions during development and in the adult CNS that are essential for brain homeostasis. Both cation and anion channel activities have been identified in astrocytes and it is believed that they play key roles in astrocyte function. Whereas the proteins and the physiological roles assigned to cation channels are becoming very clear, the study of astrocytic chloride channels is in its early stages. In recent years, we have moved from the identification of chloride channel activities present in astrocyte primary culture to the identification of the proteins involved in these activities, the determination of their 3D structure and attempts to gain insights about their physiological role. Here, we review the recent findings related to the main chloride channels identified in astrocytes: the voltage-dependent ClC-2, the calcium-activated bestrophin, the volume-activated VRAC (volume-regulated anion channel) and the stress-activated Maxi-Cl−. We discuss key aspects of channel biophysics and structure with a focus on their role in glial physiology and human disease.
Note: Reproducció del document publicat a:
It is part of: International Journal of Molecular Sciences, 2019, vol. 20, num. 5, p. 1034
Related resource:
ISSN: 1661-6596
Appears in Collections:Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))
Articles publicats en revistes (Ciències Fisiològiques)

Files in This Item:
File Description SizeFormat 
690605.pdf4.26 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons