Please use this identifier to cite or link to this item:
Title: Metformin lowers Glucose 6-phosphate in hepatocytes by activation of glycolysis downstream of glucose phosphorylation
Author: Moonira, Tabassum
Chachra, Shruti S.
Ford, Brian E.
Marin Martinez
Alshawi, Ahmed
Adam-Primus, Natasha S.
Arden, Catherine
Al-Oanzi, Ziad H.
Foretz, Marc
Viollet, Benoit
Cascante i Serratosa, Marta
Agius, Loranne
Keywords: Antidiabètics
Malalties cròniques
Hypoglucemic agents
Chronic diseases
Issue Date: 6-Mar-2020
Publisher: American Society for Biochemistry and Molecular Biology
Abstract: The chronic effects of metformin on liver gluconeogenesis involve repression of the G6pc gene, which is regulated by the carbohydrate-response element-binding protein through raised cellular intermediates of glucose metabolism. In this study we determined the candidate mechanisms by which metformin lowers glucose 6-phosphate (G6P) in mouse and rat hepatocytes challenged with high glucose or gluconeogenic precursors. Cell metformin loads in the therapeutic range lowered cell G6P but not ATP and decreased G6pc mRNA at high glucose. The G6P lowering by metformin was mimicked by a complex 1 inhibitor (rotenone) and an uncoupler (dinitrophenol) and by overexpression of mGPDH, which lowers glycerol 3-phosphate and G6P and also mimics the G6pc repression by metformin. In contrast, direct allosteric activators of AMPK (A-769662, 991, and C-13) had opposite effects from metformin on glycolysis, gluconeogenesis, and cell G6P. The G6P lowering by metformin, which also occurs in hepatocytes from AMPK knockout mice, is best explained by allosteric regulation of phosphofructokinase-1 and/or fructose bisphosphatase-1, as supported by increased metabolism of [3-3H]glucose relative to [2-3H]glucose; by an increase in the lactate m2/m1 isotopolog ratio from [1,2-13C2]glucose; by lowering of glycerol 3-phosphate an allosteric inhibitor of phosphofructokinase-1; and by marked G6P elevation by selective inhibition of phosphofructokinase-1; but not by a more reduced cytoplasmic NADH/NAD redox state. We conclude that therapeutically relevant doses of metformin lower G6P in hepatocytes challenged with high glucose by stimulation of glycolysis by an AMP-activated protein kinase-independent mechanism through changes in allosteric effectors of phosphofructokinase-1 and fructose bisphosphatase-1, including AMP, Pi, and glycerol 3-phosphate.
Note: Reproducció del document publicat a:
It is part of: Journal of Biological Chemistry, 2020, vol. 295, num. 10, p. 3330-3346
Related resource:
ISSN: 0021-9258
Appears in Collections:Articles publicats en revistes (Bioquímica i Biomedicina Molecular)

Files in This Item:
File Description SizeFormat 
699804.pdf5.12 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.