Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/173588
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMoreno Cabrera, José Marcos-
dc.contributor.authorValle Domínguez, Jesús del-
dc.contributor.authorCastellanos, Elisabeth-
dc.contributor.authorFeliubadaló i Elorza, Maria Lídia-
dc.contributor.authorPineda Riu, Marta-
dc.contributor.authorBrunet, Joan-
dc.contributor.authorSerra, Eduard-
dc.contributor.authorCapellá, G. (Gabriel)-
dc.contributor.authorLázaro García, Conxi-
dc.contributor.authorGel, Bernat-
dc.date.accessioned2021-02-02T07:05:17Z-
dc.date.available2021-02-02T07:05:17Z-
dc.date.issued2020-12-01-
dc.identifier.urihttp://hdl.handle.net/2445/173588-
dc.description.abstractAlthough germline copy-number variants (CNVs) are the genetic cause of multiple hereditary diseases, detecting them from targeted next-generation sequencing data (NGS) remains a challenge. Existing tools perform well for large CNVs but struggle with single and multi-exon alterations. The aim of this work is to evaluate CNV calling tools working on gene panel NGS data and their suitability as a screening step before orthogonal confirmation in genetic diagnostics strategies. Five tools (DECoN, CoNVaDING, panelcn.MOPS, ExomeDepth, and CODEX2) were tested against four genetic diagnostics datasets (two in-house and two external) for a total of 495 samples with 231 single and multi-exon validated CNVs. The evaluation was performed using the default and sensitivity-optimized parameters. Results showed that most tools were highly sensitive and specific, but the performance was dataset dependant. When evaluating them in our diagnostics scenario, DECoN and panelcn.MOPS detected all CNVs with the exception of one mosaic CNV missed by DECoN. However, DECoN outperformed panelcn.MOPS specificity achieving values greater than 0.90 when using the optimized parameters. In our in-house datasets, DECoN and panelcn.MOPS showed the highest performance for CNV screening before orthogonal confirmation. Benchmarking and optimization code is freely available at https://github.com/TranslationalBioinformaticsIGTP/CNVbenchmarkeR.-
dc.format.extent11 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherSpringer Nature-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41431-020-0675-z-
dc.relation.ispartofEuropean Journal of Human Genetics, 2020, vol. 28, num. 12, p. 1645-1655-
dc.relation.urihttps://doi.org/10.1038/s41431-020-0675-z-
dc.rightscc by (c) Moreno Cabrera et al., 2020-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/-
dc.sourceArticles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))-
dc.subject.classificationMalalties hereditàries-
dc.subject.classificationCèl·lules germinals-
dc.subject.otherGenetic disorders-
dc.subject.otherGerm cells-
dc.titleEvaluation of CNV detection tools for NGS panel data in genetic diagnostics-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.date.updated2021-01-25T08:41:23Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid32561899-
Appears in Collections:Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))

Files in This Item:
File Description SizeFormat 
Moreno-CabreraJM.pdf1.31 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons