Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/174503
Title: Changes in western Mediterranean thermohaline circulation in association with a deglacial Organic Rich Layer formation in the Alboran Sea
Author: Pérez-Asensio, José N. (José Noel)
Frigola Ferrer, Jaime I.
Pena González, Leopoldo David
Sierro Sánchez, Francisco Javier
Reguera, M.I.
Rodríguez Tovar, Francisco J.
Dorador, Javier
Asioli, Alessandra
Kuhlmann, Jannis
Huhn, Katrin
Cacho Lascorz, Isabel
Keywords: Micropaleontologia
Foraminífers
Isòtops
Paleoceanografia
Micropaleontology
Foraminifera
Isotopes
Paleoceanography
Issue Date: 15-Jan-2020
Publisher: Elsevier Ltd
Abstract: The accumulation of an Organic Rich Layer (ORL) during the last deglaciation in the Alboran Sea (western Mediterranean Sea) and its link to changes in deep and intermediate water circulation are here investigated. Benthic foraminiferal assemblages and the shallow infaunal foraminifer Uvigerina peregrina d13C record support the establishment of sustained high organic matter fluxes, and thus eutrophic conditions at the sea floor, during the late phase of the ORL (Younger Dryas to early Holocene periods). Since organic matter fluxes were lower (mesotrophic conditions) during the Bølling-Allerød period, they cannot be solely responsible for the ORL initiation. Geochemical, sedimentological and micropalaeontological proxies support a major weakening of the deep-water convection in the Gulf of Lion as the main driver for the development of poorly-ventilated conditions from intermediate depths (946 m) to the deep western Mediterranean basin that promoted the beginning of the ORL deposition. Nevertheless, a better ventilation at intermediate depths was established during the late ORL, while the deep basin remained poorly ventilated. We propose that our data reflect the arrival of a new better-ventilated intermediate water mass analogue to the current Levantine Intermediate Water (LIW) and/or a new intermediate water mass from the Gulf of Lion. The ultimate source of this water mass needs to be further explored but chronologies of the changes recorded here indicate that intermediate and deep ventilation phases were decoupled between the western and eastern Mediterranean basins during the deglaciation and earlymiddle Holocene.
Note: Reproducció del document publicat a: https://doi.org/10.1016/j.quascirev.2019.106075
It is part of: Quaternary Science Reviews, 2020, vol. 228, p. 106075
URI: http://hdl.handle.net/2445/174503
Related resource: https://doi.org/10.1016/j.quascirev.2019.106075
ISSN: 0277-3791
Appears in Collections:Articles publicats en revistes (Dinàmica de la Terra i l'Oceà)

Files in This Item:
File Description SizeFormat 
695358.pdf3.33 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons