Please use this identifier to cite or link to this item:
Title: Viscoelastic characterization of seven laminated glass interlayer materials from static tests
Author: Centelles, Xavier
Fernández, Pelayo
Lamela-Rey, María Jesús
Fernández Renna, Ana Inés
Salgado-Pizarro, Rebeca
Castro, J. Ramón
Cabeza, Luisa F.
Keywords: Compostos polimèrics
Plaques de vidre
Polymeric composites
Glass plates
Issue Date: 5-Feb-2021
Publisher: Elsevier
Abstract: The mechanical behaviour of laminated glass is strongly affected by the polymeric interlayer placed between glass layers. In general, this interlayer is a viscoelastic material, and therefore it may experience creep and stress relaxation when subjected for an extended period to a constant stress or strain respectively. In this study, seven different commercial interlayer materials (EVALAM, EVASAFE, PVB BG-R20, Saflex DG-41, PVB ES, SentryGlas, and TPU) were evaluated with relaxation tests at different temperatures, in order to build the relaxation master curves through the time-temperature superposition principle. A generalized Maxwell model was chosen to describe the viscoelastic behaviour of the tested materials. This paper includes the coefficients of the Prony series that fit better the experimental results. This paper has two main goals. First, to present the Prony coefficients (ei and si), which can then be used to create numerical models that take into consideration the time and temperature-dependant behaviour of the interlayer. Second, to provide the two components of the complex modulus (E*(x)) of each material, the storage modulus (E'(x)) and the loss modulus (E''(x)), which can be obtained from the relaxation modulus (E(t)) by using analytical interconversions.
Note: Versió postprint del document publicat a:
It is part of: Construction and Building Materials, 2021, vol. 279, p. 122503
Related resource:
ISSN: 0950-0618
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)

Files in This Item:
File Description SizeFormat 
707745.pdf664.24 kBAdobe PDFView/Open    Request a copy

Embargat   Document embargat fins el 5-2-2023

This item is licensed under a Creative Commons License Creative Commons