Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/175234
Title: Influence of the disordered domain structure of MeCP2 on its structural stability and dsDNA interaction
Author: Ortega Alarcón, David
Clavería Gimeno, Rafael
Vega, Sonia
Jorge-Torres, Olga C.
Esteller, Manel
Abian, Olga
Velázquez-Campoy, Adrián
Keywords: Síndrome de Rett
Proteïnes recombinants
Cromatina
Rett syndrome
Recombinant proteins
Chromatin
Issue Date: 3-Feb-2021
Publisher: Elsevier B.V.
Abstract: Methyl-CpG binding protein 2 (MeCP2) is a transcriptional regulator and a chromatin-associated structural protein. MeCP2 deregulation results in two neurodevelopmental disorders: MeCP2 dysfunction is associated with Rett syndrome, while excess of activity is associated with MeCP2 duplication syndrome. MeCP2 is an intrinsically disordered protein (IDP) constituted by six structural domains with variable, small percentage of well-defined secondary structure. Two domains, methyl-CpG binding domain (MBD) and transcription repressor domain (TRD), are the elements responsible for dsDNA binding ability and recruitment of the gene transcription/silencing machinery, respectively. Previously we studied the influence of the completely disordered, MBD-flanking domains (N-terminal domain, NTD, and intervening domain, ID) on the structural and functional features of the MBD (Claveria-Gimeno, R. et al. Sci Rep. 2017, 7, 41,635). Here we report the biophysical study of the influence of the remaining domains (transcriptional repressor domain, TRD, and C-terminal domains, CTDα and CTDβ) on the structural stability of MBD and the dsDNA binding capabilities of MBD and ID. The influence of distant disordered domains on MBD properties makes it necessary to consider the NTD-MBD-ID variant as the minimal protein construct for studying dsDNA/chromatin binding properties, while the full-length protein should be considered for transcriptional regulation studies.
Note: Reproducció del document publicat a: https://doi.org/10.1016/j.ijbiomac.2021.01.206
It is part of: International Journal of Biological Macromolecules, 2021, vol. 175, p. 58-66
URI: http://hdl.handle.net/2445/175234
Related resource: https://doi.org/10.1016/j.ijbiomac.2021.01.206
ISSN: 0141-8130
Appears in Collections:Articles publicats en revistes (Ciències Fisiològiques)

Files in This Item:
File Description SizeFormat 
706843.pdf1.33 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons