Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/175309
Title: Growth of collisional orogens from small and cold to large and hot - inferences from geodynamic models
Author: Wolf, Sebastian G.
Huismans, Ritske S.
Muñoz De la Fuente, Josep Antoni
Curry, Magdalena Ellis
van der Beek, Peter
Keywords: Escorça terrestre
Orogènesi
Pirineus
Tibet (Xina)
Alps
Earth's crust
Orogeny
Pyrenees
Tibet (China)
Alps
Issue Date: 16-Dec-2020
Publisher: European Geosciences Union (EGU)
Abstract: It is well documented that the interplay between crustal thickening and surface processes determines growth of continent‐continent collision orogens from small and cold to large and hot. Additionally, studies have demonstrated that the structural style of a mountain belt is strongly influenced by inherited (extensional) structures, the pattern of erosion and deposition, as well as the distribution of shallow detachment horizons. However, the factors controlling distribution of shortening and variable structural style as a function of convergence and surface process efficiency remain less explored. We use a 2D upper‐mantle scale plane‐strain thermo‐mechanical model (FANTOM) coupled to a planform, mass conserving surface‐process model (Fastscape), to investigate the long‐term evolution of mountain belts and the influence of lithospheric pull, extensional inheritance, surface processes efficiency, and decoupling between thin‐and thick‐skinned tectonics. We establish an evolutionary shortening distribution for orogenic growth from a mono‐vergent wedge to an orogenic plateau, and find that internal crustal loading is the main factor controlling the large scale evolution, while lithospheric pull modulates the plate driving force for orogenesis. Limited foreland‐basin filling and minor exhumation of the orogen core are characteristic for low surface‐process efficiency, while thick foreland‐basin fill, and profound exhumation of the orogen core are characteristic for high surface‐process efficiency. Utilizing a force balance analysis, we show how inherited structures, surface processes, and decoupling between thin‐and thick‐skinned deformation influence structural style during orogenic growth. Finally, we present a comparison of our generic modeling results with natural systems, with a particular focus on the Pyrenees, Alps, and Himalaya‐Tibet.
Note: Reproducció del document publicat a: https://doi.org/10.1029/2020JB021168
It is part of: Solid Earth, 2020, vol. 126, num. 2, p. e2020JB021168
URI: http://hdl.handle.net/2445/175309
Related resource: https://doi.org/10.1029/2020JB021168
ISSN: 1869-9510
Appears in Collections:Articles publicats en revistes (Dinàmica de la Terra i l'Oceà)

Files in This Item:
File Description SizeFormat 
705205.pdf11.65 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons