Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/175734
Title: Geometry Optimization in Polarizable QM/MM Models: The Induced Dipole Formulation
Author: Caprasecca, Stefano
Jurinovich, Sandro
Viani, Lucas
Curutchet Barat, Carles E.
Mennucci, Benedetta
Keywords: Polarització (Llum)
Fluorescència
Geometria analítica
Complexitat computacional
Polarization (Light)
Fluorescence
Analytic geometry
Computational complexity
Issue Date: 8-Apr-2014
Publisher: American Chemical Society
Abstract: We present the mathematical derivation and the computational implementation of the analytical geometry derivatives for a polarizable QM/MM model (QM/MMPol). In the adopted QM/MMPol model, the focused part is treated at QM level of theory, while the remaining part (the environment) is described classically as a set of fixed charges and induced dipoles. The implementation is performed within the ONIOM procedure, resulting in a polarizable embedding scheme, which can be applied to solvated and embedded systems and combined with different polarizable force fields available in the literature. Two test cases characterized by strong hydrogen-bond and dipole-dipole interactions, respectively, are used to validate the method with respect to the nonpolarizable one. Finally, an application to geometry optimization of the chromophore of Rhodopsin is presented to investigate the impact of including mutual polarization between the QM and the classical parts in conjugated systems.
Note: Versió postprint del document publicat a: https://doi.org/10.1021/ct500021d
It is part of: Journal of Chemical Theory and Computation, 2014, vol. 10, num. 4, p. 1588-1598
URI: http://hdl.handle.net/2445/175734
Related resource: https://doi.org/10.1021/ct500021d
ISSN: 1549-9618
Appears in Collections:Articles publicats en revistes (Farmàcia, Tecnologia Farmacèutica i Fisicoquímica)

Files in This Item:
File Description SizeFormat 
637249.pdf3.1 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.