Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/176044
Title: From waste to health: sustainable exploitation of grape pomace seed extract to manufacture antioxidant, regenerative and prebiotic nanovesicles within circular economy
Author: Manca, Maria Letizia
Casula, Eleonora
Marongiu, Francesca
Bacchetta, Gianluigi
Sarais, Giorgia
Zaru, Marco
Escribano Ferrer, Elvira
Peris, José Esteban
Usach, Iris
Fais, Sara
Scano, Alessandra
Orrù, Germano
Maroun, Richard G.
Fadda, Anna Maria
Manconi, Maria
Keywords: Raïms
Antioxidants
Polifenols
Prebiòtics
Grapes
Antioxidants
Polyphenols
Prebiotics
Issue Date: 2020
Publisher: Nature Publishing Group
Abstract: Pomace seed extract loaded vesicles were prepared as promising technological and green solution to exploit agri-food wastes and by-products, and develop high value-added products for human health. An antioxidant extract rich in bioactive compounds (epicatechins, catechin, gallic acid, quercetin and procynidins) was obtained from the seeds isolated from the pomace of Cannonau red grape cultivar. The extract was incorporated into phospholipid vesicles ad hoc formulated for intestinal delivery, by combining them, for the first time, whit a maltodextrin (Glucidex). Glucidex-transfersomes, glucidex-hyalurosomes and glucidex-hyalutransferomes were prepared, characterized and tested. Glucidex-liposomes were used as reference. All vesicles were small in size (~ 150 nm), homogeneously dispersed and negatively charged. Glucidex-transfersomes and especially glucidex-hyalutransfersomes disclosed an unexpected resistance to acidic pH and high ionic strength, as they maintained their physico-chemical properties (size and size distribution) after dilution at pH 1.2 simulating the harsh gastric conditions. Vesicles were highly biocompatible and able to counteract the oxidative damages induced in Caco-2 cells by using hydrogen peroxide. Moreover, they promoted the formation of Lactobacillus reuteri biofilm acting as prebiotic formulation. Overall results suggest the potential of glucidex-hyalutransfersomes as food supplements for the treatment of intestinal disorders.
Note: Reproducció del document publicat a: https://doi.org/10.1038/s41598-020-71191-8
It is part of: Scientific Reports, 2020, vol. 10, p. 14184
URI: http://hdl.handle.net/2445/176044
Related resource: https://doi.org/10.1038/s41598-020-71191-8
ISSN: 2045-2322
Appears in Collections:Articles publicats en revistes (Farmàcia, Tecnologia Farmacèutica i Fisicoquímica)

Files in This Item:
File Description SizeFormat 
707312.pdf1.83 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons