Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/176101
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGabriel, Gemma-
dc.contributor.authorIlla, Xavi-
dc.contributor.authorGuimera, Anton-
dc.contributor.authorRebollo González, Beatriz-
dc.contributor.authorHernández-Ferrer, Javier-
dc.contributor.authorMartin-Fernandez, Iñigo-
dc.contributor.authorMartínez, Mª Teresa-
dc.contributor.authorGodignon, Philippe-
dc.contributor.authorSánchez-Vives, María Victoria-
dc.contributor.authorVilla, Rosa-
dc.date.accessioned2021-04-09T08:52:12Z-
dc.date.available2021-04-09T08:52:12Z-
dc.date.issued2013-02-27-
dc.identifier.urihttp://hdl.handle.net/2445/176101-
dc.description.abstractIn the last decades, system neuroscientists around the world have dedicated their research to understand how neuronal networks work and how they malfunction in various diseases. Furthermore in the last years we have seen a progressively increased interaction of brain networks with external devices either for the use of brain computer interfaces or through the currently extended brain stimulation (e.g. transcranial magnetic stimulation) for therapy. Both techniques have evidenced even more the need for a better understanding of neuronal networks. These studies have resulted in the development of different strategies to understand the ongoing neuronal activity, such as fluorescence microscopy for genetic labelling and optogenetic techniques, imaging techniques, or the recording/stimulation with increasingly large numbers of electrodes in the whole brain or in both cell cultured neurons and slice preparations. It is in these last two areas where the technology developed on microelectrode arrays, commonly called multi-electrode arrays (MEAs), has become important over other technologiesca
dc.format.extent25 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.publisherIntechOpenca
dc.relation.isformatofReprodució del document publicat a: http://dx.doi.org/10.5772/52174-
dc.relation.ispartofChapter 15 in: Suzuki, Satoru. 2013. Physical and Chemical Properties of Carbon Nanotubes. IntechOpen. ISBN: 978-953-51-5725-0. DOI: 10.5772/46029. pp: 357-381.-
dc.relation.urihttp://dx.doi.org/10.5772/52174-
dc.rightscc by (c) Gabriel, Gemma et al., 2013-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceLlibres / Capítols de llibre (Cognició, Desenvolupament i Psicologia de l'Educació)-
dc.subject.classificationXarxes neuronals (Neurobiologia)cat
dc.subject.classificationNeurociènciescat
dc.subject.classificationNanotubs-
dc.subject.otherNeural networks (Neurobiology)eng
dc.subject.otherNeuroscienceseng
dc.subject.otherNanotubes-
dc.titleCarbon Nanotubes as Suitable Interface for Improving Neural Recordingsca
dc.typeinfo:eu-repo/semantics/bookPartca
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec280482-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Llibres / Capítols de llibre (Cognició, Desenvolupament i Psicologia de l'Educació)

Files in This Item:
File Description SizeFormat 
280482.pdf1.58 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons