Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/177034
Title: Aplicación de la dinámica simbólica en la teoría del caos
Author: Guerrero Gómez, Christian
Director/Tutor: Fontich, Ernest, 1955-
Keywords: Dinàmica topològica
Treballs de fi de grau
Sistemes dinàmics diferenciables
Sistemes dinàmics hiperbòlics
Topological dynamics
Bachelor's thesis
Differentiable dynamical systems
Hyperbolic dynamical systems
Issue Date: 21-Jun-2020
Abstract: [en] The aim of this project is to prove the Smale-Birkhoff Theorem, which provides sufficient conditions for a dynamical system to show chaotic behavior. In order to achieve this purpose, it will be apparent that symbolic dynamics play an essential role. This technique consists in characterizing the orbits of a dynamical system with bi-infinite sequences of symbols, so its structure is displayed in a simpler way, while preserving the information concerning to the dynamics. It gives the chance to perform qualitative analysis without the need of manipulating directly the complicated structure that these systems have.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Ernest Fontich
URI: http://hdl.handle.net/2445/177034
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
177034.pdfMemòria1.16 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons