Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/177186
Title: Spatial competition models
Author: Iglesias Masó, Ester
Director/Tutor: Jarque i Ribera, Xavier
Martínez de Albéniz, F. Javier
Keywords: Jocs no cooperatius (Matemàtica)
Treballs de fi de grau
Economia matemàtica
Noncooperative games (Mathematics)
Bachelor's thesis
Mathematical economics
Issue Date: Jun-2020
Abstract: [en] Hotelling’s spatial competition model defines a two-stage non-cooperative game in duopoly. First, each seller simultaneously chooses a location where to operate on a segment. Then, each firm simultaneously selects the price it wants to charge for its products. In the first part of this study, we present in detail this model — announced in 1929 by Harold Hotelling in his seminal paper Stability of Competition — , we identify its limitations and we introduce a variation using a different transportation cost function proposed by d’Aspremont et al. in 1979. In addition, we analyse an extension of the model to a circular market announced in 1979 and known as Salop’s circle model. The second part of this project is devoted to study the existence of Nash equilibria in games in which firms do not compete on price but only on location. Particularly, we follow Fournier and Scarsini (2019). Finally, we briefly touch upon the problem of inefficiency of Nash equilibria.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Xavier Jarque i Ribera i F. Javier Martínez de Albéniz
URI: http://hdl.handle.net/2445/177186
Appears in Collections:Treballs Finals de Grau (TFG) - Administració i Direcció d’Empreses i Matemàtiques (Doble Grau)
Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
177186.pdfMemòria629.21 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons