Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/177842
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCasacuberta, Carles-
dc.contributor.authorMcGarry Furriol, Jan-
dc.date.accessioned2021-06-01T08:59:32Z-
dc.date.available2021-06-01T08:59:32Z-
dc.date.issued2020-06-22-
dc.identifier.urihttp://hdl.handle.net/2445/177842-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Carles Casacubertaca
dc.description.abstract[en] Grothendieck’s homotopy hypothesis asserts that the study of homotopy types of topological spaces is equivalent to the study of $\infty$-groupoids, illustrating how important ideas in higher category theory stem from basic homotopical concepts. In practice there are distinct models for $\infty$-groupoids, and providing a proof of the homotopy hypothesis is a test for the suitability of any such model. In this thesis, we give a proof of the homotopy hypothesis using topological categories (i.e., categories enriched over topological spaces) as models for $\infty$-groupoids. In the same context, we propose a manageable model for the fundamental $\infty$-groupoids of a topological space.ca
dc.format.extent56 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Jan McGarry Furriol, 2020-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.classificationCategories (Matemàtica)ca
dc.subject.classificationTreballs de fi de grau-
dc.subject.classificationTeoria de l'homotopiaca
dc.subject.classificationGrupoidesca
dc.subject.otherCategories (Mathematics)en
dc.subject.otherBachelor's thesis-
dc.subject.otherHomotopy theoryen
dc.subject.otherGroupoidsen
dc.titleHomotopical realizations of infinity Groupoidsca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
177842.pdfMemòria491.8 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons