Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/178112
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBarbero Castillo, Almudena-
dc.contributor.authorRiefolo, Fabio-
dc.contributor.authorMatera, Carlo-
dc.contributor.authorCaldas Martínez, Sara-
dc.contributor.authorMateos Aparicio, Pedro-
dc.contributor.authorWeinert, Julia F.-
dc.contributor.authorGarrido Charles, Aida-
dc.contributor.authorClaro Izaguirre, Enrique-
dc.contributor.authorSánchez Vives, Maria V.-
dc.contributor.authorGorostiza Langa, Pablo Ignacio-
dc.date.accessioned2021-06-08T08:13:03Z-
dc.date.available2021-06-08T08:13:03Z-
dc.date.issued2021-05-21-
dc.identifier.urihttp://hdl.handle.net/2445/178112-
dc.descriptionReproducció del document publicat a:https://doi.org/10.1002/advs.202005027ca
dc.description.abstractThe ability to control neural activity is essential for research not only in basic neuroscience, as spatiotemporal control of activity is a fundamental experimental tool, but also in clinical neurology for therapeutic brain interventions. Transcranial-magnetic, ultrasound, and alternating/direct current (AC/DC) stimulation are some available means of spatiotemporal controlled neuromodulation. There is also light-mediated control, such as optogenetics, which has revolutionized neuroscience research, yet its clinical translation is hampered by the need for gene manipulation. As a drug-based light-mediated control, the effect of a photoswitchable muscarinic agonist (Phthalimide-Azo-Iper (PAI)) on a brain network is evaluated in this study. First, the conditions to manipulate M2 muscarinic receptors with light in the experimental setup are determined. Next, physiological synchronous emergent cortical activity consisting of slow oscillations—as in slow wave sleep—is transformed into a higher frequency pattern in the cerebral cortex, both in vitro and in vivo, as a consequence of PAI activation with light. These results open the way to study cholinergic neuromodulation and to control spatiotemporal patterns of activity in different brain states, their transitions, and their links to cognition and behavior. The approach can be applied to different organisms and does not require genetic manipulation, which would make it translational to humans.ca
dc.format.extent11 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.publisherWiley-VCHca
dc.relation.ispartofAdvanced Science, 2021-
dc.relation.urihttps://doi.org/10.1002/advs.202005027-
dc.rightscc by (c) Barbero Castillo et al., 2021-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))-
dc.subject.classificationNeurociències-
dc.subject.classificationNeurologia-
dc.subject.otherNeurosciences-
dc.subject.otherNeurology-
dc.titleControl of Brain State Transitions with a Photoswitchable Muscarinic Agonistca
dc.typeinfo:eu-repo/semantics/articleca
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/945539/EU//HBP SGA3-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.identifier.pmid34018704-
Appears in Collections:Articles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))
Publicacions de projectes de recerca finançats per la UE

Files in This Item:
File Description SizeFormat 
doi_10.1002_advs.202005027.pdf1.88 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons