Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/178133
Title: Kähler geometry
Author: Porta Grau, Roger
Director/Tutor: Lahoz Vilalta, Martí
Keywords: Varietats de Kähler
Treballs de fi de grau
Connexions (Matemàtica)
Geometria diferencial global
Varietats simplèctiques
Kählerian manifolds
Bachelor's thesis
Connections (Mathematics)
Global differential geometry
Symplectic manifolds
Issue Date: 21-Jun-2020
Abstract: [en] The main goal of this work is to provide an introductory dive into the subject of Complex Geometry by giving three different characterizations of Kähler manifolds and proving their equivalence. We define complex, Hermitian, Kähler and symplectic manifolds and we briefly study their properties. We present the Hodge conjecture and define the holonomy group. Finally, we present a brief glimpse into other types of spaces, namely Calabi-Yau and Hyperkähler manifolds.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2020, Director: Martí Lahoz Vilalta
URI: http://hdl.handle.net/2445/178133
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
178133.pdfMemòria671.72 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons