Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/178715
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuete Hernández, Sergio-
dc.contributor.authorMaldonado Alameda, Alex-
dc.contributor.authorGiró Paloma, Jessica-
dc.contributor.authorChimenos Ribera, Josep Ma.-
dc.contributor.authorFormosa Mitjans, Joan-
dc.date.accessioned2021-06-29T12:24:19Z-
dc.date.available2022-12-21T06:10:24Z-
dc.date.issued2020-12-21-
dc.identifier.issn0272-8842-
dc.identifier.urihttp://hdl.handle.net/2445/178715-
dc.description.abstractMagnesium phosphate cement (MPC) is a potential sustainable alternative to Portland cement. It is possible to lower the total CO2 emissions related to MPC manufacturing by using by-products and wastes as raw materials. When by-products are used to develop MPC, the resultant binder can be referred to as sustainable magnesium phosphate cement (sust-MPC). This research incorporates ceramic, stone, and porcelain waste (CSP) as a filler in sust-MPC to obtain a micromortar. Sust-MPC is formulated with KH2PO4 and low-grade MgO (LG-MgO), a by-product composed of 40-60 wt% MgO. CSP is the non-recyclable glass fraction generated by the glass recycling industry. The effect of water and CSP addition on the mechanical properties of sust-MPC was analyzed using design of experiments (DoE). A statistical model was obtained and validated by testing ideally formulated samples achieved through optimization of the DoE. The optimal formulation (15 wt% of CSP and a water to cement ratio of 0.34) was realized by maximizing the compressive strength at 7 and 28 days of curing, resulting in values of 18 and 25 MPa respectively. After one year of curing, the micromortar was physico-chemically characterized in-depth using backscattered scanning electron microscopy (BSEM-EDS) and Fourier transform infrared-attenuated total reflectance spectroscopy (FTIR-ATR). The optimal formulation showed good integration of CSP particles in the ceramic matrix. Thus, a potential reaction between silica and the K-struvite matrix may have occurred after one year of curing.-
dc.format.extent13 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.ceramint.2020.12.210-
dc.relation.ispartofCeramics International, 2020, vol. 47, num. 8, p. 10905-10917-
dc.relation.urihttps://doi.org/10.1016/j.ceramint.2020.12.210-
dc.rightscc-by-nc-nd (c) Elsevier B.V., 2020-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)-
dc.subject.classificationPropietats mecàniques-
dc.subject.classificationCiment pòrtland-
dc.subject.classificationDisseny d'experiments-
dc.subject.otherMechanical properties-
dc.subject.otherPortland cement-
dc.subject.otherExperimental design-
dc.titleFabrication of sustainable magnesium phosphate cement micromortar using design of experiments statistical modelling: Valorization of ceramic-stone-porcelain containing waste as filler-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec706267-
dc.date.updated2021-06-29T12:24:20Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)

Files in This Item:
File Description SizeFormat 
706267.pdf7.22 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons