Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/179010
Title: Chemical Probes for Blocking of Influenza A M2 Wild-type and S31N Channels
Author: Tzitzoglaki, Christina
McGuire, Kelly
Lagarias, Panagiotis
Konstantinidi, Athina
Hoffmann, Anja
Fokina, Natalie A.
Ma, Chulong
Papanastasiou, Ioannis P.
Schreiner, Peter R.
Vázquez Cruz, Santiago
Schmidtke, Michaela
Wang, Jun
Busath, David D.
Kolocouris, Antonios
Keywords: Influenzavirus
Dianes farmacològiques
Química farmacèutica
Química orgànica
Síntesi orgànica
Influenza viruses
Drug targeting
Pharmaceutical chemistry
Organic chemistry
Organic synthesis
Issue Date: 18-Sep-2020
Publisher: American Chemical Society
Abstract: We report on using the synthetic aminoadamantane-CH2-aryl derivatives 1-6 as sensitive probes for blocking M2 S31N and influenza A virus (IAV) M2 wild-type (WT) channels as well as virus replication in cell culture. The binding kinetics measured using electrophysiology (EP) for M2 S31N channel are very dependent on the length between the adamantane moiety and the first ring of the aryl headgroup realized in 2 and 3 and the girth and length of the adamantane adduct realized in 4 and 5. Study of 1-6 shows that, according to molecular dynamics (MD) simulations and molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations, all bind in the M2 S31N channel with the adamantyl group positioned between V27 and G34 and the aryl group projecting out of the channel with the phenyl (or isoxazole in 6) embedded in the V27 cluster. In this outward binding configuration, an elongation of the ligand by only one methylene in rimantadine 2 or using diamantane or triamantane instead of adamantane in 4 and 5, respectively, causes incomplete entry and facilitates exit, abolishing effective block compared to the amantadine derivatives 1 and 6. In the active M2 S31N blockers 1 and 6, the phenyl and isoxazolyl head groups achieve a deeper binding position and high kon/low koff and high kon/high koff rate constants, compared to inactive 2-5, which have much lower kon and higher koff. Compounds 1-5 block the M2 WT channel by binding in the longer area from V27-H37, in the inward orientation, with high kon and low koff rate constants. Infection of cell cultures by influenza virus containing M2 WT or M2 S31N is inhibited by 1-5 or 1-4 and 6, respectively. While 1 and 6 block infection through the M2 block mechanism in the S31N variant, 2-4 may block M2 S31N virus replication in cell culture through the lysosomotropic effect, just as chloroquine is thought to inhibit SARS-CoV-2 infection.
Note: Versió postprint del document publicat a: https://doi.org/10.1021/acshembio.0c00553
It is part of: ACS Chemical Biology, 2020, vol. 15, num. 9, p. 2331-2337
URI: http://hdl.handle.net/2445/179010
Related resource: https://doi.org/10.1021/acshembio.0c00553
ISSN: 1554-8929
Appears in Collections:Articles publicats en revistes (Farmacologia, Toxicologia i Química Terapèutica)

Files in This Item:
File Description SizeFormat 
707768.pdf1.28 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.