Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/179273
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArias Tamargo, G.-
dc.contributor.authorRodríguez Gómez, Diego-
dc.contributor.authorRusso, J. G. (Jorge Guillermo)-
dc.date.accessioned2021-07-21T10:13:04Z-
dc.date.available2021-07-21T10:13:04Z-
dc.date.issued2020-01-28-
dc.identifier.issn1126-6708-
dc.identifier.urihttp://hdl.handle.net/2445/179273-
dc.description.abstractWe compute general higher-point functions in the sector of large charge operators ϕn,ϕ¯¯¯n at large charge in O(2) (ϕ¯¯¯ϕ)2 theory. We find that there is a special class of "extremal" correlators having only one insertion of ϕ¯¯¯n that have a remarkably simple form in the double-scaling limit n →∞ at fixed g n2 ≡ λ, where g ~ ϵ is the coupling at the O(2) Wilson-Fisher fixed point in 4 − ϵ dimensions. In this limit, also non-extremal correlators can be computed. As an example, we give the complete formula for ⟨ϕ(x1)nϕ(x2)nϕ¯¯¯(x3)nϕ¯¯¯(x4)n⟩, which reveals an interesting structure.-
dc.format.extent13 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherSpringer Verlag-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1007/JHEP01(2020)171-
dc.relation.ispartofJournal of High Energy Physics, 2020, num. 171-
dc.relation.urihttps://doi.org/10.1007/JHEP01(2020)171-
dc.rightscc-by (c) Arias Tamargo, G. et al., 2020-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subject.classificationSimetria (Física)-
dc.subject.classificationTeoria quàntica de camps-
dc.subject.otherSymmetry (Physics)-
dc.subject.otherQuantum field theory-
dc.titleCorrelation functions in scalar field theory at large charge-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec705709-
dc.date.updated2021-07-21T10:13:05Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Física Quàntica i Astrofísica)

Files in This Item:
File Description SizeFormat 
705709.pdf287.74 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons