Please use this identifier to cite or link to this item:
Title: Differential astrocyte and oligodendrocyte vulnerability in murine Creutzfeldt-Jakob disease
Author: Andrés Benito, Pol
Carmona Murillo, Margarita
Douet, Jean Yves
Cassard, Hervé
Andreoletti, Olivier
Ferrer, Isidro (Ferrer Abizanda)
Keywords: Malaltia de Creutzfeldt-Jakob
Malalties per prions
Creutzfeldt-Jakob disease
Prion diseases
Issue Date: 1-Jan-2021
Publisher: Informa UK Limited
Abstract: Glial vulnerability to prions is assessed in murine Creutzfeldt-Jakob disease (CJD) using the tg340 mouse line expressing four-fold human PrP M129 levels on a mouse PrP null background at different days following intracerebral inoculation of sCJD MM1 brain tissues homogenates. The mRNA expression of several astrocyte markers, including glial fibrillary acidic protein (gfap), aquaporin-4 (aqp4), solute carrier family 16, member 4 (mct4), mitochondrial pyruvate carrier 1 (mpc1) and solute carrier family 1, member 2 (glial high-affinity glutamate transporter, slc1a2) increases at 120 and 180 dpi. In contrast, the mRNA expression of oligodendrocyte and myelin markers oligodendrocyte transcription factor 1 (olig1), olig2, neural/glial antigen 2 (cspg), solute carrier family 16, member 1 (mct1), myelin basic protein (mbp), myelin oligodendrocyte glycoprotein (mog) and proteolipid protein 1 (plp1) is preserved. Yet, myelin regulatory factor (myrf) mRNA is increased at 180 dpi. In the striatum, a non-significant increase in the number of GFAP-positive astrocytes and Iba1-immunoreactive microglia occurs at 160 dpi; a significant increase in the number of astrocytes and microglia, and a significant reduction in the number of Olig2-immunoreactive oligodendrocytes occur at 180 dpi. A decrease of MBP, but not PLP1, immunoreactivity is also observed in the striatal fascicles. These observations confirm the vulnerability and the reactive responses of astrocytes, together with the microgliosis at middle stages of prion diseases. More importantly, these findings show oligodendrocyte vulnerability and myelin alterations at advanced stages of murine CJD. They confirm oligodendrocyte involvement in the pathogenesis of CJD.
Note: Reproducció del document publicat a:
It is part of: Prion, 2021, vol. 15, num. 1, p. 112–120
Related resource:
ISSN: 1933-690X
Appears in Collections:Articles publicats en revistes (Patologia i Terapèutica Experimental)
Articles publicats en revistes (Institut de Neurociències (UBNeuro))
Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))

This item is licensed under a Creative Commons License Creative Commons