Please use this identifier to cite or link to this item:
Title: Amplitude death and restoration in networks of oscillators with random-walk diffusion
Author: Clusella, Pau
Miguel López, María del Carmen
Pastor Satorras, Romualdo
Keywords: Rutes aleatòries (Matemàtica)
Xarxes (Matemàtica)
Random walks (Mathematics)
Nets (Mathematics)
Issue Date: 26-Jan-2021
Publisher: Springer Nature
Abstract: Systems composed of reactive particles diffusing in a network display emergent dynamics. While Fick's diffusion can lead to Turing patterns, other diffusion schemes might display more complex phenomena. Here we study the death and restoration of collective oscillations in networks of oscillators coupled by random-walk diffusion, which modifies both the original unstable fixed point and the stable limit-cycle, making them topology-dependent. By means of numerical simulations we show that, in some cases, the diffusion-induced heterogeneity stabilizes the initially unstable fixed point via a Hopf bifurcation. Further increasing the coupling strength can moreover restore the oscillations. A numerical stability analysis indicates that this phenomenology corresponds to a case of amplitude death, where the inhomogeneous stabilized solution arises from the interplay of random walk diffusion and heterogeneous topology. Our results are relevant in the fields of epidemic spreading or ecological dispersion, where random walk diffusion is more prevalent.
Note: Reproducció del document publicat a:
It is part of: Communications Physics, 2021, vol. 4, num. 13, p. 1-11
Related resource:
ISSN: 2399-3650
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
707512.pdf1.37 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons