Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/180158
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBalocco, Simone-
dc.contributor.authorDíaz, Oliver-
dc.contributor.authorCanals Canals, Pere-
dc.contributor.authorRibó Jacobi, Marc-
dc.date.accessioned2021-09-21T11:05:09Z-
dc.date.issued2021-09-21-
dc.identifier.urihttp://hdl.handle.net/2445/180158-
dc.descriptionSystem requirements: For deployment, Arterial has been partly tested on Ubuntu 18.04 and 20.04. Check for Cuda compatibility (cuDNN, cudatoolkit) between your Nvidia GPU and the PyTorch version installed through the nnU-Net package5 . Your GPU should have at least 3GB of VRAM to correctly perform inference with the segmentation models (otherwise, you could run into memory problems). For development, Arterial, has been tested on MacOS 10.15 or newer, excluding the segmentation module due to the lack of Cuda support.-
dc.descriptionL'accés als materials dipositats no estarà disponible fins la fi de la data d'embargament. Si esteu interessats a accedir-hi, contacteu amb idea@fbg.ub.edu-
dc.description.abstract[cat] Arterial és un programari d’anàlisi d’imatges mèdiques per a cirurgia de l’ictus, mitjançant l'avaluació quantitativa de la tortuositat vascular, derivada de la imatge mèdica abans de la intervenció en el context de l’ictus. L’objectiu final de l’Arterial és optimitzar el tractament endovascular de l 'ictus isquèmic agut, mitjançant prediccions rellevants abans de la intervenció, de manera que els neurointervencionista pot prendre decisions sobre les possibilitats de tractament de cada individu.ca
dc.description.abstract[eng] Arterial framework is an AI-powered medical image analysis framework for stroke surgical planning through the quantitative assessment of vascular tortuosity, derived from medical imaging prior to intervention in the stroke context. The ultimate goal of Arterial is to optimize endovascular treatment for acute ischemic stroke by delivering relevant predictions regarding the difficulty of endovascular treatment in stroke patients prior to intervention, such that neurointerventionalists can make supported decisions regarding the treatment possibilities for each individual patient, and advanced towards a more personalized medicine through the power of AI.-
dc.description.sponsorshipProjecte: UBTT0437-E-
dc.format.mimetypeapplication/gzip-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.publisherUniversitat de Barcelonaca
dc.rights(c) Universitat de Barcelona, Vall d’Hebron Institut de Recerca, 2021-
dc.subject.classificationProcessament d'imatges-
dc.subject.classificationMalalties cerebrovasculars-
dc.subject.classificationProgramari-
dc.subject.otherImage processing-
dc.subject.otherCerebrovascular disease-
dc.subject.otherComputer software-
dc.titleARTERIAL an AI framework for mechanical thrombectomy Planning through the automated characterization of vascular tortuosityca
dc.typeinfo:eu-repo/semantics/otherca
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccessca
dc.embargo.lift2026-09-21-
dc.date.embargoEndDateinfo:eu-repo/date/embargoEnd/2026-09-21ca
Appears in Collections:Programari - Recerca
Programari (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
arterial_code.tar.gzCode1.36 GBUnknownView/Open    Request a copy
User_manual_Arterial.pdfManual2.15 MBAdobe PDFView/Open    Request a copy
README.md5.76 kBUnknownView/Open    Request a copy
requirements.txt91 BTextView/Open    Request a copy


Embargat   Document embargat fins el 21-9-2026


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.