Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/181265
Title: Plasmonic nanocrystals on polycarbonate substrates for direct and label-free biodetection of Interleukin-6 in bioengineered 3D skeletal muscles
Author: Lopez Muñoz, Gerardo A.
Fernandez Costa, Juan M.
Ortega, María Alejandra
Balaguer Trias, Jordina
Martín Lasierra, Eduard
Azcón, Javier Ramón
Keywords: Enginyeria de teixits
Múscul estriat
Tissue engineering
Striated muscle
Issue Date: 11-Oct-2021
Publisher: De Gruyter Open
Abstract: The development of nanostructured plasmonic biosensors has been widely widespread in the last years, motivated by the potential benefits they can offer in integration, miniaturization, multiplexing opportunities, and enhanced performance label-free biodetection in a wide field of applications. Between them, engineering tissues represent a novel, challenging, and prolific application field for nanostructured plasmonic biosensors considering the previously described benefits and the low levels of secreted biomarkers (?pM–nM) to detect. Here, we present an integrated plasmonic nanocrystals-based biosensor using high throughput nanostructured polycarbonate substrates. Metallic film thickness and incident angle of light for reflectance measurements were optimized to enhance the detection of antibody–antigen biorecognition events using numerical simulations. We achieved an enhancement in biodetection up to 3× as the incident angle of light decreases, which can be related to shorter evanescent decay lengths. We achieved a high reproducibility between channels with a coefficient of variation below 2% in bulk refractive index measurements, demonstrating a high potential for multiplexed sensing. Finally, biosensing potential was demonstrated by the direct and label-free detection of interleukin-6 biomarker in undiluted cell culture media supernatants from bioengineered 3D skeletal muscle tissues stimulated with different concentrations of endotoxins achieving a limit of detection (LOD) of ? 0.03 ng/mL (1.4 pM).
Note: Reproducció del document publicat a: https://doi.org/10.1515/nanoph-2021-0426
It is part of: Nanophotonics, 2021
URI: http://hdl.handle.net/2445/181265
Related resource: https://doi.org/10.1515/nanoph-2021-0426
ISSN: 2192-8614
Appears in Collections:Publicacions de projectes de recerca finançats per la UE
Articles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))

Files in This Item:
File Description SizeFormat 
12537_6532513_10.1515_nanoph-2021-0426.pdf3.52 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons