Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/183869
Title: Controlling Chemical Reactivity with Optimally Oriented Electric Fields: A Generalization of the Newton Trajectory Method
Author: Bofill i Villà, Josep M.
Quapp, Wolfgang
Albareda, Guillermo
Moreira, Ibério de Pinho Ribeiro
Ribas Ariño, Jordi
Keywords: Algorismes
Estructura molecular
Camps elèctrics
Algorithms
Molecular structure
Electric fields
Issue Date: 2022
Publisher: American Chemical Society
Abstract: The use of oriented external electric fields (OEEF) as a tool to accelerate chemical reactions has recently attracted much interest. A new model to calculate the optimal OEEF of the least intensity to induce a barrierless chemical reaction path is presented. A suitable ansatz is provided by defining an effective potential energy surface (PES), which considers the unperturbed or original PES of the molecular reactive system and the action of a constant OEEF on the overall dipole moment of system. Based on a generalization of the Newton Trajectories (NT) method, it is demonstrated that the optimal OEEF can be determined upon locating a special point of the potential energy surface (PES), the so-called 'optimal bond-breaking point' (optimal BBP), for which two different algorithms are proposed. At this point, the gradient of the original or unperturbed PES is an eigenvector of zero eigenvalue of the Hessian matrix of the effective PES. A thorough discussion of the geometrical aspects of the optimal BBP and the optimal OEEF is provided using a two-dimensional model, and numerical calculations of the optimal OEEF for a SN2 reaction and the 1,3-dipolar retrocycloaddition of isoxazole to fulminic acid plus acetylene reaction serve as a proof of concept. The knowledge of the orientation of optimal OEEF provides a practical way to reduce the effective barrier of a given chemical process.
Note: Versió postprint del document publicat a: https://doi.org/10.1021/acs.jctc.1c00943
It is part of: Journal of Chemical Theory and Computation, 2022, vol. 18, p. 935-952
URI: http://hdl.handle.net/2445/183869
Related resource: https://doi.org/10.1021/acs.jctc.1c00943
ISSN: 1549-9618
Appears in Collections:Articles publicats en revistes (Química Inorgànica i Orgànica)
Articles publicats en revistes (Institut de Química Teòrica i Computacional (IQTCUB))

Files in This Item:
File Description SizeFormat 
717221.pdf6.23 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.