Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/184426
Title: Salt tectonics of the offshore Tarfaya Basin, Moroccan Atlantic margin
Author: Uranga, Rodolfo M.
Ferrer García, J. Oriol (José Oriol)
Zamora, Gonzalo
Muñoz, J. A.
Rowan, Mark G
Keywords: Tectònica salina
Marges continentals
Marroc
Atlàntic, Oceà
Tectonique du sel
Continental margins
Morocco
Atlantic Ocean
Issue Date: 1-Apr-2022
Publisher: Elsevier B.V.
Abstract: Salt tectonics play a critical role on passive margins evolution controlling aspects like structural style, subsidence patterns and thermal history, amongst others. The salt-bearing Atlantic passive margin of Morocco hosts one of the oldest stratigraphic records documenting the opening history of the Central Atlantic. However, the available seismic data is scarce and some offshore basins are still poorly studied, particularly in southern Morocco. Through the interpretation of an unpublished 2D/3D seismic dataset from the offshore Tarfaya Basin (SW Morocco), this study aims to highlight the key events that conditioned the evolution of this salt-bearing basin. From proximal to distal regions, the structural style of the basin is characterized by expulsion rollovers and saltcored anticlines delimited by primary welded surfaces, evolving to buried salt sheets surrounded by thick minibasins and finally, diapirs actively deforming the modern seabed. From Late Triassic to Early Jurassic times, salt was deposited with a basinward thickening wedge-shaped geometry on a narrow trough developed over thinned continental crust. During the Jurassic, sedimentation and associated salt withdrawal triggered early salt deformation. Gravity gliding is a common process in salt-bearing passive margins that requires an originally continuous autochthonous salt layer with a minimum slope angle and longitude to thickness ratio of the overburden. However, in the Tarfaya Basin, the narrow geometry of the salt-bearing depocenter hampered this process. Early salt tectonics was probably triggered by slope progradation during the Early Jurassic. During the Early Cretaceous, the progradation of the Tan-Tan Delta promoted a continued basinward expulsion of salt, the development of a local salt-detached gravitational system and the proximal extrusion of salt sheets. Finally, from Late Cretaceous to the Present-day, shortening related to the convergence between Africa and Eurasia resulted in thick-skin inversion and the rejuvenation of precursor salt structures.
Note: Versió postprint del document publicat a: https://doi.org/10.1016/j.marpetgeo.2021.105521
It is part of: Marine and Petroleum Geology, 2022, vol. 138, num. 105521
URI: http://hdl.handle.net/2445/184426
Related resource: https://doi.org/10.1016/j.marpetgeo.2021.105521
ISSN: 0264-8172
Appears in Collections:Articles publicats en revistes (Dinàmica de la Terra i l'Oceà)

Files in This Item:
File Description SizeFormat 
720821.pdf23.23 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons