Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/184662
Title: Photocatalytic degradation of sulfamethoxazole using TiO2 in simulated seawater: evidence for direct formation of reactive halogen species and halogenated by-products
Author: Porcar Santos, Oriol
Cruz Alcalde, Alberto
López Vinent, Núria
Zanganas, Dimitrios
Sans Mazón, Carme
Keywords: Fotocatàlisi
Halògens
Diòxid de titani
Nanopartícules
Photocatalysis
Halogens
Titanium dioxide
Nanoparticles
Issue Date: 10-Mar-2020
Publisher: Elsevier B.V.
Abstract: Combined sewer overflows (CSO), generated during the wet weather flow from the combination of the inflow and stormwater runoff in sewer system, result in an overflow of untreated wastewater from sewer system, which might ultimately contain different micropollutants (MPs). In this study, a coagulation-flocculation-sedimentation (CFS) pretreated CSO spiked with MPs was treated by catalytic ozonation using carbon, iron and peroxide based catalysts. The catalysts were characterized and their activity on MPs removal was studied at two different ozone (O3) doses (5 and 10 mg L‒1). The effect of the treatment on the spiked CSO effluent was also assessed from the acute toxicity of the effluent using Microtox®, Yeast and Macrophage cell-line toxicity assay tests. All the carbon-based catalysts showed large surface area, which was strongly influenced by the activation technique in the preparation of the catalyst. The CFS treatment strongly reduced the turbidity (≥ 60%) but had marginal effect on the UV254, dissolved organic carbon (DOC) and pH. Sludge Based Carbon (SBC) showed strong adsorption capacity (≥ 60% removal efficiency) for all MPs studied compared to other carbon and iron-based catalysts. Ozonation alone was effective for the degradation of easily oxidizable MPs (sulfamethoxazole, mecoprop, and 2,4-dichlorophenoxyl acetic acid), achieving more than 80% degradation efficiency at 10 mg L‒1 of ozone, but not effective for atrazine (≤ 60% degradation efficiency) at similar O3 dose. Catalytic ozonation (at 10 mg L‒1 O3 dose) improved the degradation of the MPs at low catalyst dosage but higher dosage strongly inhibited their degradation. In all cases, the effluents showed negligible acute toxicity, indicating the suitability of the process for the treatment of CSO.
Note: Versió postprint del document publicat a: https://doi.org/10.1016/j.scitotenv.2020.139605
It is part of: Chemical Engineering Journal, 2020, vol. 736, num. 139605
URI: http://hdl.handle.net/2445/184662
Related resource: https://doi.org/10.1016/j.scitotenv.2020.139605
ISSN: 1385-8947
Appears in Collections:Articles publicats en revistes (Enginyeria Química i Química Analítica)

Files in This Item:
File Description SizeFormat 
702460.pdf1.14 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons