Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/185796
Title: Global CO2 fertilization of Sphagnum peat mosses via suppression of photorespiration during the twentieth century
Author: Serk, Henrik
Nilsson, Mats B.
Bohlin, Elisabet
Ehlers, Ina
Wieloch, Thomas
Olid Garcia, Carolina
Grover, Samantha
Kalbitz, Karsten
Limpens, Juul
Moore, Tim
Muchberger, Wiebke
Talbot, Julie
Wang, Xianwei
Knorr, Klaus-Holger
Pancotto, Verónica
Schleucher, Jürgen
Keywords: Diòxid de carboni
Diòxid de carboni atmosfèric
Fotosíntesi
Carbon dioxide
Atmospheric carbon dioxide
Photosynthesis
Issue Date: 31-Dec-2021
Publisher: Nature Publishing Group
Abstract: Natural peatlands contribute signifcantly to global carbon sequestration and storage of biomass, most of which derives from Sphagnum peat mosses. Atmospheric CO2 levels have increased dramatically during the twentieth century, from 280 to> 400 ppm, which has afected plant carbon dynamics. Net carbon assimilation is strongly reduced by photorespiration, a process that depends on the CO2 to O2 ratio. Here we investigate the response of the photorespiration to photosynthesis ratio in Sphagnum mosses to recent CO2 increases by comparing deuterium isotopomers of historical and contemporary Sphagnum tissues collected from 36 peat cores from fve continents. Rising CO2 levels generally suppressed photorespiration relative to photosynthesis but the magnitude of suppression depended on the current water table depth. By estimating the changes in water table depth, temperature, and precipitation during the twentieth century, we excluded potential efects of these climate parameters on the observed isotopomer responses. Further, we showed that the photorespiration to photosynthesis ratio varied between Sphagnum subgenera, indicating diferences in their photosynthetic capacity. The global suppression of photorespiration in Sphagnum suggests an increased net primary production potential in response to the ongoing rise in atmospheric CO2, in particular for mire structures with intermediate water table depths.
Note: Reproducció del document publicat a: https://doi.org/10.1038/s41598-021-02953-1
It is part of: Scientific Reports, 2021, vol. 11, num. 24517
URI: http://hdl.handle.net/2445/185796
Related resource: https://doi.org/10.1038/s41598-021-02953-1
ISSN: 2045-2322
Appears in Collections:Articles publicats en revistes (Dinàmica de la Terra i l'Oceà)

Files in This Item:
File Description SizeFormat 
717354.pdf1.7 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons