Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/185960
Title: Comprehensive identification of somatic nucleotide variants in human brain tissue
Author: Wang, Yifan
Bae, Taejeong
Thorpe, Jeremy
Sherman, Maxwell A.
Jones, Attila G.
Cho, Sean
Daily, Kenneth
Dou, Yanmei
Ganz, Javier
Galor, Alon
Lobon, Irene
Pattni, Reenal
Rosenbluh, Chaggai
Tomasi, Simone
Tomasini, Livia
Yang, Xiaoxu
Zhou, Bo
Akbarian, Schahram
Ball, Laurel L.
Bizzotto, Sara
Emery, Sarah B.
Doan, Ryan
Fasching, Liana
Jang, Yeongjun
Juan, David
Lizano, Esther
Luquette, Lovelace J.
Moldovan, John B.
Narurkar, Rujuta
Oetjens, Matthew T.
Rodin, Rachel E.
Sekar, Shobana.
Shin, Joo Heon
Soriano García, Eduardo
Straub, Richard E.
Zhou, Weichen
Chess, Andrew
Gleeson, Joseph G.
Marquès i Bonet, Tomàs, 1975-
Park, Peter J.
Peters, Mette A.
Pevsner, Jonathan
Walsh, Christopher A.
Weinberger, Daniel R.
Brain Somatic Mosaicism Network
Moran, John V.
Urban, Alexander E.
Kidd, Jeffrey M.
Mills, Ryan E.
Abyzov, Alexej
Keywords: Malalties
Neuropsiquiatria
Reparació de l'ADN
Duplicació de l'ADN
Diseases
Neuropsychiatry
DNA repair
DNA replication
Issue Date: 29-Mar-2021
Publisher: BioMed Central
Abstract: Background: Post-zygotic mutations incurred during DNA replication, DNA repair, and other cellular processes lead to somatic mosaicism. Somatic mosaicism is an established cause of various diseases, including cancers. However, detecting mosaic variants in DNA from non-cancerous somatic tissues poses significant challenges, particularly if the variants only are present in a small fraction of cells. Results: Here, the Brain Somatic Mosaicism Network conducts a coordinated, multi-institutional study to examine the ability of existing methods to detect simulated somatic single-nucleotide variants (SNVs) in DNA mixing experiments, generate multiple replicates of whole-genome sequencing data from the dorsolateral prefrontal cortex, other brain regions, dura mater, and dural fibroblasts of a single neurotypical individual, devise strategies to discover somatic SNVs, and apply various approaches to validate somatic SNVs. These efforts lead to the identification of 43 bona fide somatic SNVs that range in variant allele fractions from ~ 0.005 to ~ 0.28. Guided by these results, we devise best practices for calling mosaic SNVs from 250× whole-genome sequencing data in the accessible portion of the human genome that achieve 90% specificity and sensitivity. Finally, we demonstrate that analysis of multiple bulk DNA samples from a single individual allows the reconstruction of early developmental cell lineage trees. Conclusions: This study provides a unified set of best practices to detect somatic SNVs in non-cancerous tissues. The data and methods are freely available to the scientific community and should serve as a guide to assess the contributions of somatic SNVs to neuropsychiatric diseases.
Note: Reproducció del document publicat a: https://doi.org/10.1186/s13059-021-02285-3
It is part of: Genome Biology, 2021, vol. 22, num. 92, p. 1-32
URI: http://hdl.handle.net/2445/185960
Related resource: https://doi.org/10.1186/s13059-021-02285-3
ISSN: 1474-7596
Appears in Collections:Articles publicats en revistes (Biologia Cel·lular, Fisiologia i Immunologia)

Files in This Item:
File Description SizeFormat 
721316.pdf2.08 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons