Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/18792
Title: Discretized integral hydrodynamics
Author: Romero-Rochín, V.
Rubí Capaceti, José Miguel
Keywords: Teoria quàntica
Teoria de camps (Física)
Relativitat especial (Física)
Física matemàtica
Química física
Quantum theory
Field theory (Physics)
Special relativity (Physics)
Physical and theoretical chemistry
Mathematical physics
Issue Date: 1998
Publisher: The American Physical Society
Abstract: Using an interpolant form for the gradient of a function of position, we write an integral version of the conservation equations for a fluid. In the appropriate limit, these become the usual conservation laws of mass, momentum, and energy. We also discuss the special cases of the Navier-Stokes equations for viscous flow and the Fourier law for thermal conduction in the presence of hydrodynamic fluctuations. By means of a discretization procedure, we show how the integral equations can give rise to the so-called particle dynamics of smoothed particle hydrodynamics and dissipative particle dynamics.
Note: Reproducció del document publicat a: http://dx.doi.org/10.1103/PhysRevE.58.1843
It is part of: Physical Review E, 1998, num. 58, núm. 2, p. 1843
URI: http://hdl.handle.net/2445/18792
ISSN: 1063-651X
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
143474.pdf159.99 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.