El Dipòsit Digital ha actualitzat el programari. Contacteu amb dipositdigital@ub.edu per informar de qualsevol incidència.

 
Carregant...
Miniatura

Tipus de document

Treball de fi de màster

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Rozalén, 2022
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/188120

A Generative-Model approach to path integrals

Títol de la revista

ISSN de la revista

Títol del volum

Resum

The Feynman path integral formalism is one of the most elegant approaches to Quantum Mechanics, and it provides an alternative and more intuitive manner of understanding the relation between quantum and classical mechanics. Nevertheless, path integrals have the drawback of being utterly difficult to compute, which is why computational methods tackling this issue are in order. In this work we explore the possibilities that Machine Learning has to offer in such computational scenarios. Inspired by the standard Markov-Chain Monte Carlo approach to path integrals, we design a generative neural network that can infer the path distribution from previously generated paths and can also generate new paths equally distributed. Our method has the fundamental advantage over the Markov Chain technique that, once trained, it can sample random paths efficiently and in parallel. The ML model that we employ is not specifically tailored to solve path integrals, and in fact it can be readily embedded in any setting where learning or sampling from a probability density function is needed.

Descripció

Màster Oficial de Ciència i Tecnologia Quàntiques / Quantum Science and Technology, Facultat de Física, Universitat de Barcelona. Curs: 2021-2022. Tutor: A. Rios

Citació

Citació

ROZALÉN SARMIENTO, Javier. A Generative-Model approach to path integrals. [consulta: 27 de novembre de 2025]. [Disponible a: https://hdl.handle.net/2445/188120]

Exportar metadades

JSON - METS

Compartir registre