Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/188754
Title: Unparalleled selectivity and electronic structure of heterometallic [LnLn'Ln] molecules as 3-qubit quantum gates
Author: Maniaki, Diamantoula
Garay-Ruiz, Diego
Barrios Moreno, Leoní Alejandra
Martins, Daniel O.T.A.
Aguilà Avilés, David
Tuna, Floriana
Reta Mañeru, Daniel
Roubeau, Olivier
Bo, Carles
Aromí Bedmar, Guillem
Keywords: Ordinadors quàntics
Estructura electrònica
Nanotecnologia
Quantum computers
Electronic structure
Nanotechnology
Issue Date: 14-Apr-2022
Publisher: Royal Society of Chemistry
Abstract: Heterometallic lanthanide [LnLn′] coordination complexes that are accessible thermodynamically are very scarce because the metals of this series have very similar chemical behaviour. Trinuclear systems of this category have not been reported. A coordination chemistry scaffold has been shown to produce molecules of type [LnLn′Ln] of high purity, i.e. exhibiting high metal distribution ability, based on their differences in ionic radius. Through a detailed analysis of density functional theory (DFT) based calculations, we discern the energy contributions that lead to the unparalleled chemical selectivity of this molecular system. Some of the previously reported examples are compared here with the newly prepared member of this exotic list, [Er2Pr(LA)2(LB)2(py)(H2O)2](NO3) (1) (H2LA and H2LB are two β-diketone ligands). A magnetic analysis extracted from magnetization and calorimetry determinations identifies the necessary attributes for it to act as an addressable, conditional multiqubit spin-based quantum gate. Complementary ab initio calculations confirm the feasibility of these complexes as composite quantum gates, since they present well-isolated ground states with highly anisotropic and distinct g-tensors. The electronic structure of 1 has also been analyzed by EPR. Pulsed experiments have allowed the establishment of the quantum coherence of the transitions within the relevant spin states, as well as the feasibility of a coherent control of these states via nutation experiments.
Note: Reproducció del document publicat a: https://doi.org/10.1039/D2SC00436D
It is part of: Chemical Science, 2022, vol. 13, p. 5574-5581
URI: http://hdl.handle.net/2445/188754
Related resource: https://doi.org/10.1039/D2SC00436D
ISSN: 2041-6520
Appears in Collections:Publicacions de projectes de recerca finançats per la UE
Articles publicats en revistes (Química Inorgànica i Orgànica)

Files in This Item:
File Description SizeFormat 
723551.pdf1.05 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons