Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/189124
Title: The lysosomal proteome of senescent cells contributes to the senescence secretome
Author: Rovira, Miguel
Sereda, Rebecca
Pladevall Morera, David
Ramponi, Valentina
Marin, Ines
Maus, Mate
Madrigal Matute, Julio
Díaz, Antonio
García Pérez, José Fernando
Muñoz, Javier
Cuervo, Ana María
Serrano, Manuel
Keywords: Lisosomes
Factors d'edat en les malalties
Age factors in disease
Lysosomes
Issue Date: 1-Jan-2022
Abstract: Senescent cells accumulate in tissues over time, favoring the onset and progression of multiple age-related diseases. Senescent cells present a remarkable increase in lysosomal mass and elevated autophagic activity. Here, we report that two main autophagic pathways macroautophagy (MA) and chaperone-mediated autophagy (CMA) are constitutively upregulated in senescent cells. Proteomic analyses of the subpopulations of lysosomes preferentially engaged in each of these types of autophagy revealed profound quantitative and qualitative changes in senescent cells, affecting both lysosomal resident proteins and cargo proteins delivered to lysosomes for degradation. These studies have led us to identify resident lysosomal proteins that are highly augmented in senescent cells and can be used as novel markers of senescence, such as arylsulfatase ARSA. The abundant secretome of senescent cells, known as SASP, is considered their main pathological mediator; however, little is known about the mechanisms of SASP secretion. Some secretory cells, including melanocytes, use the small GTPase RAB27A to perform lysosomal secretion. We found that this process is exacerbated in the case of senescent melanoma cells, as revealed by the exposure of lysosomal membrane integral proteins LAMP1 and LAMP2 in their plasma membrane. Interestingly, a subset of SASP components, including cytokines CCL2, CCL3, CXCL12, cathepsin CTSD, or the protease inhibitor SERPINE1, are secreted in a RAB27A-dependent manner in senescent melanoma cells. Finally, proteins previously identified as plasma biomarkers of aging are highly enriched in the lysosomes of senescent cells, including CTSD. We conclude that the lysosomal proteome of senescent cells is profoundly reconfigured, and that some senescent cells can be highly active in lysosomal exocytosis.© 2022 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd.
Note: Reproducció del document publicat a: https://doi.org/10.1111/acel.13707
It is part of: Aging Cell, 2022, vol. 21, num. 10
URI: http://hdl.handle.net/2445/189124
Related resource: https://doi.org/10.1111/acel.13707
ISSN: 1474-9726
Appears in Collections:Articles publicats en revistes (Institut de Recerca Biomèdica (IRB Barcelona))

Files in This Item:
File Description SizeFormat 
Rovira et al_Aging Cell_2022_vr.pdf3.1 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons