Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/189682
Title: Data integration in inflammatory bowel disease
Author: Revilla Sancho, Lluís
Director/Tutor: Salas Martínez, Azucena
Lozano Salvatella, Juan José
Keywords: Ciències de la salut
Malalties inflamatòries intestinals
Genòmica
Transcripció genètica
Medical sciences
Inflammatory bowel diseases
Genomics
Genetic transcription
Issue Date: 14-Jun-2022
Publisher: Universitat de Barcelona
Abstract: [eng] INTRODUCTION: Inflammatory bowel disease is a complex intestinal disease with several genetic and environmental factors that can influence its course. The ethiology and pathophysiology of the disease is not fully understood. There is some evidence that microbiome can play a role. Finding relationships between microbiome and host’s mucosa could help advance prevention, diagnosis or treatment. METHODS: We based our analysis on intestinal bacterial 16S rRNA and human transcriptome data from biopsies from multiple timepoints and intestine segments. We extended regularized generalized canonical correlation analysis to find models that are coherent with previous knowledge on the disease taking into account the samples’ information. Multiple inflammatory bowel disease datasets on different treatments and conditions were analysed and the models defining those dataset were compared. The results were compared with multiple co-inertia analysis. RESULTS: Splitting sample variables into different blocks results in models of these relationships that show differences on the genes and microorganisms selected. The models generated using our new method inteRmodel outperformed multiple coinertia analysis to classify the samples according to their location. Despite being used on datasets of different sources the resulting models show similar relationships between variables. DISCUSSION: Comparing multiple models helps find out the relationships within datasets. Our method finds how strong are the relationships between the microbiome, transcriptome and environmental variables. On different datasets genes selected were common. This approach is robust and flexible to different datasets and settings. CONCLUSION: With inteRmodel we found that the microbiome relates more closely to the sample location than to disease, but the transcriptome is highly related to the location of the sample on the intestine. There is a common transcriptome between datasets while microorganisms depend of the dataset. We can improve sample classification by taking into account both bacterial 16S rRNA and host transcriptome.
[cat] INTRODUCCIÓ: La malaltia inflamatòria intestinal és una malaltia intestinal complexa amb diversos factors genètics i ambientals que poden influir en el seu curs. L'etiologia i fisiopatologia de la malaltia no es con eix del tot. Hi ha evidències que el microbioma pot tenir un paper rellevant. Trobar relacions entre el microbioma i la mucosa de l'hoste podria ajudar a avançar en la prevenció, el diagnòstic o el tractament. MÈTODES: Vam basar la nostra anàlisi en dades d'ARNr 16S bacteriana intestinal i de transcriptoma humà de biòpsies de múltiples punts de temps i segments intestinals. Hem ampliat l'anàlisi de correlació canònica generalitzada regularitzada per trobar models coherents amb el coneixement previ sobre la malaltia tenint en compte la informació de les mostres. Es van analitzar diversos conjunts de dades de malaltia inflamatòria intestinal sobre diferents tractaments i condicions i es van comparar els models que defineixen aquest conjunt de dades. Els resultats es van comparar amb l'anàlisi de coinèrcia múltiple. RESULTATS: Dividir les variables de la mostra en diferents blocs dona com a resultat models d'aquestes relacions que mostren diferències en els gens i els microorganismes seleccionats. Els models generats mitjançant el nostre nou mètode intermodel van superar l'anàlisi de coinèrcia múltiple per classificar les mostres segons la seva ubicació. Tot i utilitzar-se en conjunts de dades de diferents fonts, els models resultants mostren relacions similars entre variables. DISCUSSIÓ: La comparació de diversos models ajuda a esbrinar les relacions dins dels conjunts de dades. El nostre mètode troba com de fortes són les relacions entre el microbioma, el transcriptoma i les variables ambientals. En diferents conjunts de dades, els gens seleccionats eren comuns. Aquest enfocament és robust i flexible per a diferents conjunts de dades i configuracions. CONCLUSIÓ: Amb inteRmodel vam trobar que el microbioma es relaciona més estretament amb la ubicació de la mostra que amb la malaltia, però el transcriptoma està molt relacionat amb la ubicació de la mostra a l'intestí. Hi ha un transcriptoma comú entre conjunts de dades, mentre que els microorganismes depenen del conjunt de dades. Podem millorar la classificació de les mostres tenint en compte tant l'ARNr 16S bacterià com el transcriptoma hoste.
[spa] INTRODUCCIÓN: La enfermedad inflamatoria intestinal es una enfermedad intestinal compleja con factores genéticos y ambientales que pueden influir en su curso. La etiología y la fisiopatología de la enfermedad no se conocen por completo. Existen evidencias que el microbioma puede desempeijar un papel relevante. Encontrar relaciones entre el microbioma y la mucosa del huésped podría ayudar a avanzar en la prevención, el diagnóstico o el tratamiento. MÉTODOS: Basamos nuestro análisis en el ARNr 16S bacteriano intestinal y en datos de transcriptomas humanos de biopsias de múltiples puntos temporales y segmentos intestinales. Extendimos el análisis de correlación canónica generalizada regularizado para encontrar modelos coherentes con el conocimiento previo sobre la enfermedad teniendo en cuenta la información de las muestras. Se analizaron múltiples conjuntos de datos de enfermedad inflamatoria intestinal en diferentes tratamientos y condiciones y se compararon los modelos que definen esos conjuntos de datos. Los resultados se compararon con análisis de coinercia múltiple. RESULTADOS: Dividir las variables de la muestra en diferentes bloques resulta en modelos de estas relaciones que muestran diferencias en los genes y microorganismos seleccionados. Los modelos generados con nuestro nuevo método, inter-Rmodel, superaron el análisis de múltiples coinercias para clasificar las muestras según su ubicación. A pesar de ser utilizados en conjuntos de datos de diferentes fuentes, los modelos resultantes muestran unas relaciones similares entre las variables. DISCUSIÓN: La comparación de varios modelos ayuda a descubrir las relaciones dentro de los conjuntos de datos. Nuestro método encuentra cuán fuertes son las relaciones entre el microbioma, el transcriptoma y las variables ambientales. En diferentes conjuntos de datos, los genes seleccionados eran comunes. Este enfoque es robusto y flexible para diferentes conjuntos de datos y configuraciones. CONCLUSIÓN: Con inteRmodel descubrimos que el microbioma se relaciona más estrechamente con la ubicación de la muestra que con la enfermedad, pero el transcriptoma está muy relacionado con la ubicación de la muestra en el intestino. Hay un transcriptoma común entre los conjuntos de datos, mientras que los microorganismos dependen del conjunto de datos. Podemos mejorar la clasificación de las muestras teniendo en cuenta tanto el ARNr 16S bacteriano como el transcriptoma del huésped.
URI: http://hdl.handle.net/2445/189682
Appears in Collections:Tesis Doctorals - Facultat - Farmàcia i Ciències de l'Alimentació

Files in This Item:
File Description SizeFormat 
LRS_PhD_THESIS.pdf13.49 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons