Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/191711
Title: Neuronal induction and bioenergetics characterization of human forearm adipose stem cells from Parkinson's disease patients and healthy controls
Author: González Casacuberta, Ingrid
Vilas, Dolores
Pont Sunyer, Claustre
Tobías, Ester
Cantó Santos, Judith
Valls Roca, Laura
García-García, Francesc Josep
Garrabou Tornos, Glòria
Grau Junyent, Josep M. (Josep Maria)
Martí Domènech, Ma. Josep
Cardellach, Francesc
Morén Núñez, Constanza
Keywords: Malalties neurodegeneratives
Malaltia de Parkinson
Bioenergètica
Cèl·lules mare
Regeneració del sistema nerviós
Neurodegenerative Diseases
Parkinson's disease
Bioenergetics
Stem cells
Nervous system regeneration
Issue Date: 15-Mar-2022
Publisher: Public Library of Science (PLoS)
Abstract: Neurodegenerative diseases, such as Parkinson's disease, are heterogeneous disorders with a multifactorial nature involving impaired bioenergetics. Stem-regenerative medicine and bioenergetics have been proposed as promising therapeutic targets in the neurologic field. The rationale of the present study was to assess the potential of human-derived adipose stem cells (hASCs) to transdifferentiate into neuronal-like cells (NhASCs and neurospheres) and explore the hASC bioenergetic profile. hASC neuronal transdifferentiation was performed through neurobasal media and differentiation factor exposure. High resolution respirometry was assessed. Increased MAP-2 neuronal marker protein expression upon neuronal induction (p<0.05 undifferentiated hASCs vs. 28-36 days of differentiation) and increased bIII-tubulin neuronal marker protein expression upon neuronal induction (p<0.05 undifferentiated hASCs vs. 6-28-36 days of differentiation) were found. The bioenergetic profile was detectable through high-resolution respirometry approaches in hASCs but did not lead to differential oxidative capacity rates in healthy or clinically diagnosed PD-hASCs. We confirmed the capability of transdifferentiation to the neuronal-like profile of hASCs derived from the forearms of human subjects and characterized the bioenergetic profile. Suboptimal maximal respiratory capacity trends in PD were found. Neuronal induction leading to positive neuronal protein expression markers is a relevant issue that encourages the suitability of NhASC models in neurodegeneration.
Note: Reproducció del document publicat a: https://doi.org/10.1371/journal.pone.0265256
It is part of: PLoS One, 2022, vol. 17, num. 3
URI: http://hdl.handle.net/2445/191711
Related resource: https://doi.org/10.1371/journal.pone.0265256
ISSN: 1932-6203
Appears in Collections:Articles publicats en revistes (IDIBAPS: Institut d'investigacions Biomèdiques August Pi i Sunyer)
Articles publicats en revistes (Medicina)

Files in This Item:
File Description SizeFormat 
722869.pdf1.68 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons