Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/192812
Title: Towards large area surface functionalization with luminescent and magnetic lanthanoid complexes
Author: Gabarró Riera, Guillem
Jover Modrego, Jesús
Rubio Zuazo, Juan
Bartolomé, Elena
Sañudo Zotes, Eva Carolina
Keywords: Luminescència
Propietats magnètiques
Luminescence
Magnetic properties
Issue Date: 22-Jun-2022
Publisher: Royal Society of Chemistry
Abstract: Homogeneous surface deposition of molecules over a large area of the substrate is difficult to achieve but extremely important for proposed applications of magnetic molecules in data storage, information processing or molecular spintronics. In this paper we report a simple method for large area surface functionalization with the aim of grafting complex molecules in an organized manner. A proof of concept is given by grafting the complexes [Ln2(SYML)3(H2O)] (1 Ln = Eu(III), 2 Ln = Dy(III)) on the functionalized Si(100) and using a combination of techniques, including luminescence to track the process. We obtain a homogenous coverage of Si(100) wafers (from 0.5 cm × 0.5 cm to 1 cm × 1 cm) with complexes 1 and 2. Time of flight secondary ion mass spectroscopy (ToF-SIMS) confirms the presence of the expected molecular fragments on the surface. Grazing incidence X-Ray diffraction (GIXRD) measurements show preferred orientations and ordered domains of the molecules. The magnetic properties and anisotropy of the monolayer of grafted molecules are examined by X-Ray magnetic circular dichroism (XMCD), showing a fraction of molecules with a preferred orientation of their easy axis of magnetization at 30° with respect to the surface-normal.
Note: Versió postprint del document publicat a: https://doi.org/10.1039/d2qi00995a
It is part of: Inorganic Chemistry Frontiers, 2022, vol. 9, p. 4160-4170
URI: http://hdl.handle.net/2445/192812
Related resource: https://doi.org/10.1039/d2qi00995a
ISSN: 2052-1553
Appears in Collections:Articles publicats en revistes (Química Inorgànica i Orgànica)

Files in This Item:
File Description SizeFormat 
726822.pdf1.88 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.