Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/193623
Title: Hippocampal Egr1-dependent neuronal ensembles negatively regulate motor learning
Author: Brito, Verónica
Montalban, Enrica
Sancho Balsells, Anna
Pupak, Anika
Flotta, Francesca
Masana Nadal, Mercè
Ginés Padrós, Silvia
Alberch i Vié, Jordi
Martin, Claire
Girault, Jean-Antoine
Giralt Torroella, Albert
Keywords: Hipocamp (Cervell)
Aprenentatge mixt
Trastorns de la memòria
Neurones motores
Neurones
Hippocampus (Brain)
Blended learning
Memory disorders
Motor neurons
Neurons
Issue Date: 24-May-2022
Publisher: The Society for Neuroscience
Abstract: Motor skills learning is classically associated with brain regions including cerebral and cerebellar cortices and basal ganglia nuclei. Less is known about the role of the hippocampus in the acquisition and storage of motor skills. Here, we show that mice receiving a long-term training in the accelerating rotarod display marked hippocampal transcriptional changes and reduced pyramidal neurons activity in the CA1 region when compared with naive mice. Then, we use mice in which neural ensembles are permanently labeled in an Egr1 activity-dependent fashion. Using these mice, we identify a subpopulation of Egr1-expressing pyramidal neurons in CA1 activated in short-term (STT) and long-term (LTT) trained mice in the rotarod task. When Egr1 is downregulated in the CA1 or these neuronal ensembles are depleted, motor learning is improved whereas their chemogenetic stimulation impairs motor learning performance. Thus, Egr1 organizes specific CA1 neuronal ensembles during the accelerating rotarod task that limit motor learning. These evidences highlight the role of the hippocampus in the control of this type of learning and we provide a possible underlying mechanism.SIGNIFICANCE STATEMENT It is a major topic in neurosciences the deciphering of the specific circuits underlying memory systems during the encoding of new information. However, the potential role of the hippocampus in the control of motor learning and the underlying mechanisms has been poorly addressed. In the present work we show how the hippocampus responds to motor learning and how the Egr1 molecule is one of the major responsible for such phenomenon controlling the rate of motor coordination performances.
Note: Reproducció del document publicat a: https://doi.org/10.1523/JNEUROSCI.2258-21.2022
It is part of: Journal of Neuroscience, 2022, vol. 42, num. 27, p. 5346-5360
URI: http://hdl.handle.net/2445/193623
Related resource: https://doi.org/10.1523/JNEUROSCI.2258-21.2022
ISSN: 0270-6474
Appears in Collections:Articles publicats en revistes (IDIBAPS: Institut d'investigacions Biomèdiques August Pi i Sunyer)
Articles publicats en revistes (Biomedicina)

Files in This Item:
File Description SizeFormat 
723741.pdf6.29 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons