Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/195233
Title: Neuronal Replacement in Stem Cell Therapy for Stroke: Filling the Gap
Author: Palma Tortosa, Sara
Coll San Martin, Berta
Kokaia, Zaal
Tornero, Daniel
Keywords: Cèl·lules mare
Motors de dos temps
Teràpia cel·lular
Empelts de teixits
Transformació cel·lular
Stem cells
Two-stroke cycle engines
Cellular therapy
Tissue transplantation
Cell transformation
Issue Date: 6-Apr-2021
Publisher: Frontiers Media
Abstract: Stem cell therapy using human skin-derived neural precursors holds much promise for the treatment of stroke patients. Two main mechanisms have been proposed to give rise to the improved recovery in animal models of stroke after transplantation of these cells. First, the so called by-stander effect, which could modulate the environment during early phases after brain tissue damage, resulting in moderate improvements in the outcome of the insult. Second, the neuronal replacement and functional integration of grafted cells into the impaired brain circuitry, which will result in optimum long-term structural and functional repair. Recently developed sophisticated research tools like optogenetic control of neuronal activity and rabies virus monosynaptic tracing, among others, have made it possible to provide solid evidence about the functional integration of grafted cells and its contribution to improved recovery in animal models of brain damage. Moreover, previous clinical trials in patients with Parkinson's Disease represent a proof of principle that stem cell-based neuronal replacement could work in humans. Our studies with in vivo and ex vivo transplantation of human skin-derived cells neurons in animal model of stroke and organotypic cultures of adult human cortex, respectively, also support the hypothesis that human somatic cells reprogrammed into neurons can get integrated in the human lesioned neuronal circuitry. In the present short review, we summarized our data and recent studies from other groups supporting the above hypothesis and opening new avenues for development of the future clinical applications
Note: Reproducció del document publicat a: https://doi.org/10.3389/fcell.2021.662636
It is part of: Frontiers In Cell And Developmental Biology, 2021, vol. 9, p. 662636
URI: http://hdl.handle.net/2445/195233
Related resource: https://doi.org/10.3389/fcell.2021.662636
ISSN: 2296-634X
Appears in Collections:Articles publicats en revistes (Biomedicina)
Articles publicats en revistes (IDIBAPS: Institut d'investigacions Biomèdiques August Pi i Sunyer)

Files in This Item:
File Description SizeFormat 
713578.pdf2.27 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons