Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/197083
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMartínez-Mármol, Ramón-
dc.contributor.authorDavid, Miren-
dc.contributor.authorSanches, Rosario-
dc.contributor.authorRoura-Ferrer, Meritxell-
dc.contributor.authorVillalonga, Núria-
dc.contributor.authorSorianello, Eleonora-
dc.contributor.authorWebb, Susan M.-
dc.contributor.authorZorzano Olarte, Antonio-
dc.contributor.authorGumà i Garcia, Anna Maria-
dc.contributor.authorValenzuela, Carmen-
dc.contributor.authorFelipe Campo, Antonio-
dc.date.accessioned2023-04-21T07:56:28Z-
dc.date.available2023-04-21T07:56:28Z-
dc.date.issued2007-12-01-
dc.identifier.issn0008-6363-
dc.identifier.urihttp://hdl.handle.net/2445/197083-
dc.description.abstractObjective: Cellular cardiomyoplasty using skeletal myoblasts is a promising therapy for myocardial infarct repair. Once transplanted, myoblasts grow, differentiate and adapt their electrophysiological properties towards more cardiac-like phenotypes. Voltage-dependent Na + channels (Na v ) are the main proteins involved in the propagation of the cardiac action potential, and their phenotype affects cardiac performance. Therefore, we examined the expression of Na v during proliferation and differentiation in skeletal myocytes. Methods and results: We used the rat neonatal skeletal myocyte cell line L6E9. Proliferation of L6E9 cells induced Na v 1.4 and Na v 1.5, although neither protein has an apparent role in cell growth. During myogenesis, Na v1.5 was largely induced. Electrophysiological and pharmacological properties, as well as mRNA expression, indicate that cardiac-type Na v1.5 accounts for almost 90% of the Na + current in myotubes. Unlike in proliferation, this protein plays a pivotal role in myogenesis. The adoption of a cardiac-like phenotype is further supported by the increase in Nav 1.5 colocalization in caveolae. Finally, we demonstrate that the treatment of myoblasts with neuregulin further increased Na v 1.5 in skeletal myocytes. Conclusion: Our results indicate that skeletal myotubes adopt a cardiac-like phenotype in cell culture conditions and that the expression of Na v1.5 acts as an underlying molecular mechanism.-
dc.format.extent12 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherOxford University Press-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.cardiores.2007.08.009-
dc.relation.ispartofCardiovascular Research, 2007, vol. 76, num. 3, p. 430-441-
dc.relation.urihttps://doi.org/10.1016/j.cardiores.2007.08.009-
dc.rights(c) European Society of Cardiology, 2007-
dc.sourceArticles publicats en revistes (Bioquímica i Biomedicina Molecular)-
dc.subject.classificationCanals iònics-
dc.subject.classificationMiogènesi-
dc.subject.classificationMalalties del cor-
dc.subject.classificationBiologia del desenvolupament-
dc.subject.otherIon channels-
dc.subject.otherMyogenesis-
dc.subject.otherHeart diseases-
dc.subject.otherDevelopmental biology-
dc.titleVoltage-dependent Na+ channel phenotype changes in myoblasts. Consequences for cardiac repair-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec553982-
dc.date.updated2023-04-21T07:56:28Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Bioquímica i Biomedicina Molecular)

Files in This Item:
File Description SizeFormat 
553982.pdf1.88 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.