Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/198710
Title: Supercritical CO2 Synthesis of Porous Metalloporphyrin Frameworks: Application in Photodynamic Therapy
Author: Kubovics, Márta
Careta, Oriol
Vallcorba, Oriol
Romo Islas, Guillermo
Rodríguez Raurell, Laura
Ayllón, José A.
Domingo, Concepción
Nogués, Carme
López-Periago, Ana
Keywords: Dissolvents
Metalls
Pirroles
Solvents
Metals
Pyrroles
Issue Date: 2023
Publisher: American Chemical Society
Abstract: A series of porous metalloporphyrin frameworks prepared from the 5,10,15,20-tetra(4-pyridyl)porphyrin (H2TPyP) linker and four metal complexes, M(hfac)2 M = Cu(II), Zn(II), Co(II), and Ni(II) (hfac: 1,1,1,5,5,5-hexafluoroacetylacetonate), were obtained using supercritical CO2 (scCO2) as a solvent. All the materials, named generically as [M-TPyP]n, formed porous metal-organic frameworks (MOFs), with surface areas of ∼450 m2 g-1. All MOFs were formed through the coordination of the metal to the exocyclic pyridine moieties in the porphyrin linker. For Cu(II), Zn(II), and Co(II), incomplete metal coordination of the inner pyrrole ring throughout the structure was observed, giving place to MOFs with substitutional defects and leading to a certain level of disorder and limited crystallinity. These samples, prepared using scCO2, were precipitated as nano- to micrometric powders. Separately, a layering technique from a mixture of organic solvents was used to crystallize high-quality crystals of the Co(II) based MOF, obtained with the formula [{Co(hfac)2}2H2TPyP]n. The crystal structure of this MOF was elucidated by single-crystal synchrotron X-ray diffraction. The Zn(II)-based MOF was selected as a potential photodynamic therapy drug in the SKBR-3 tumoral cell line showing outstanding performance. This MOF resulted to be nontoxic, but after 15 min of irradiation at 630 nm, using either 1 or 5 μM concentration of the product, almost 70% of tumor cells died after 72 h.
Note: Reproducció del document publicat a: https://doi.org/10.1021/acs.chemmater.2c03018
It is part of: Chemistry of Materials, 2023, vol. 35, num. 3, p. 1080-1093
URI: http://hdl.handle.net/2445/198710
Related resource: https://doi.org/10.1021/acs.chemmater.2c03018
ISSN: 0897-4756
Appears in Collections:Articles publicats en revistes (Química Inorgànica i Orgànica)

Files in This Item:
File Description SizeFormat 
732535.pdf10.5 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons