Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/207398
Title: EvryFlare. III. Temperature Evolution and Habitability Impacts of Dozens of Superflares Observed Simultaneously by Evryscope and TESS
Author: Howard, Ward S.
Corbett, Hank
Law, Nicholas M.
Ratzloff, Jeffrey K.
Galliher, Nathan
Glazier, Amy L.
Gonzalez, Ramses
Vasquez Soto, Alan
Fors Aldrich, Octavi
Ser Badia, Daniel del
Haislip, Joshua
Keywords: Observatoris
Planetes
Telescopis
Observatories
Planets
Telescopes
Issue Date: 1-Oct-2020
Publisher: Institute of Physics (IOP)
Abstract: Superflares may provide the dominant source of biologically relevant UV radiation to rocky habitable-zone M-dwarf planets (M-Earths), altering planetary atmospheres and conditions for surface life. The combined line and continuum flare emission has usually been approximated by a 9000 K blackbody. If superflares are hotter, then the UV emission may be 10 times higher than predicted from the optical. However, it is unknown for how long M-dwarf superflares reach temperatures above 9000 K. Only a handful of M-dwarf superflares have been recorded with multiwavelength high-cadence observations. We double the total number of events in the literature using simultaneous Evryscope and Transiting Exoplanet Survey Satellite observations to provide the first systematic exploration of the temperature evolution of M-dwarf superflares. We also increase the number of superflaring M dwarfs with published time-resolved blackbody evolution by ∼10×. We measure temperatures at 2 minutes cadence for 42 superflares from 27 K5–M5 dwarfs. We find superflare peak temperatures (defined as the mean of temperatures corresponding to flare FWHM) increase with flare energy and impulse. We find the amount of time flares emit at temperatures above 14,000 K depends on energy. We discover that 43% of the flares emit above 14,000 K, 23% emit above 20,000 K and 5% emit above 30,000 K. The largest and hottest flare briefly reached 42,000 K. Some do not reach 14,000 K. During superflares, we estimate M-Earths orbiting <200 Myr stars typically receive a top-of-atmosphere UV-C flux of ∼120 W m−2 and up to 103 W m−2, 100–1000 times the time-averaged X-ray and UV flux from Proxima Cen.
Note: Reproducció del document publicat a: https://doi.org/10.3847/1538-4357/abb5b4
It is part of: Astrophysical Journal, 2020, vol. 902, num.2
URI: http://hdl.handle.net/2445/207398
Related resource: https://doi.org/10.3847/1538-4357/abb5b4
ISSN: 0004-637X
Appears in Collections:Articles publicats en revistes (Física Quàntica i Astrofísica)
Articles publicats en revistes (Institut de Ciències del Cosmos (ICCUB))

Files in This Item:
File Description SizeFormat 
232204.pdf1.97 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.