Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/208180
Title: High-resolution scan of the Pyrenean crustal structure combining magnetotelluric and gravity data
Author: Piña-Varas, Perla
Soto, R.
Clariana, P.
Ayala, C.
Rubio, F.
Ledo Fernández, Juanjo
Rey-Moral, C.
Martí i Castells, Anna
Mitjanas Colls, Gemma
Queralt i Capdevila, Pilar
Marcuello Pascual, Alejandro
Santolaria, Pablo
Pueyo, Emilio
Keywords: Prospecció geofísica
Geologia estructural
Pirineus
Prospecció magnetotel·lúrica
Geophysical exploration
Structural geology
Pyrenees
Magnetotelluric prospecting
Issue Date: 5-Oct-2023
Publisher: Elsevier B.V.
Abstract: The Pyrenees have undergone complex geodynamic evolution starting with experiencing significant tectonic events during the Variscan Orogeny, followed by the intrusion of large granitic complexes during the late Variscan stage, then the collision between the Iberian and European plates during the Alpine Orogeny, and finally, Mesozoic extension. Despite extensive studies and the application of various geophysical methods (two-dimensional seismic reflection data, gravity, and long period magnetotellurics) to investigate the Pyrenean structure, there are still fundamental questions regarding its basement and cover architecture. Specifically, the geometry at depth of significant bodies such as the Late Variscan intrusive granites and Triassic evaporitic accumulations, remains unclear. To better understand these issues, we have conducted joint magnetotelluric and gravity surveys along a 60-kilometer-long transect, spanning the boundary between the Axial and South Pyrenean Zones. Our final geological interpretation shows that the La Maladeta batholith consists of two distinct granitic bodies related to different intrusive pulses. In addition, we identify important Triassic evaporitic accumulations at depth. This work shows the high potential of integrating two geophysical models for understanding the geological evolution of structurally complex areas. The magnetotelluric and gravity data are complementary, with each dataset providing a different resolution for investigating the basement and cover architecture of the Pyrenees. These resolutions depend on the varied petrophysical properties of the rocks involved, including water content and deformation grade.
Note: Reproduccio del document publicat a: https://doi.org/10.1016/j.tecto.2023.230022
It is part of: Tectonophysics, 2023, vol. 864
URI: http://hdl.handle.net/2445/208180
ISSN: 0040-1951
Appears in Collections:Articles publicats en revistes (Dinàmica de la Terra i l'Oceà)

Files in This Item:
File Description SizeFormat 
832294.pdf3.42 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons