Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/21864
Title: Manifolds on the verge of a hyperbolicity breakdown
Author: Haro, Àlex
Llave, Rafael de la
Keywords: Física estadística
Termodinàmica
Sistemes dinàmics diferenciables
Dinàmica de fluids
Statistical physics
Thermodynamics
Differentiable dynamical systems
Fluid dynamics
Issue Date: 2006
Publisher: American Institute of Physics
Abstract: We study numerically the disappearance of normally hyperbolic invariant tori in quasiperiodic systems and identify a scenario for their breakdown. In this scenario, the breakdown happens because two invariant directions of the transversal dynamics come close to each other, losing their regularity. On the other hand, the Lyapunov multipliers associated with the invariant directions remain more or less constant. We identify notable quantitative regularities in this scenario, namely that the minimum angle between the two invariant directions and the Lyapunov multipliers have power law dependence with the parameters. The exponents of the power laws seem to be universal.
Note: Reproducció del document publicat a: http://dx.doi.org/10.1063/1.2150947
It is part of: Chaos, 2006, vol. 16, núm. 1, p. 013120
URI: http://hdl.handle.net/2445/21864
ISSN: 1054-1500
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
553064.pdf458.31 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.