Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/24513
Title: Poincar wave equations as Fourier transformations of Galilei wave equations
Author: Gomis Torné, Joaquim
Poch Parés, Agustí
Pons Ràfols, Josep Maria
Keywords: Àlgebra
Equació de Schrödinger
Física matemàtica
Spin (Física nuclear)
Algebra
Schrödinger equation
Mathematical physics
Nuclear spin
Issue Date: 1980
Publisher: American Institute of Physics
Abstract: The relationship between the Poincar and Galilei groups allows us to write the Poincar wave equations for arbitrary spin as a Fourier transform of the Galilean ones. The relation between the Lagrangian formulation for both cases is also studied.
Note: Reproducció del document proporcionada per AIP i http://dx.doi.org/10.1063/1.524369
It is part of: Journal of Mathematical Physics, 1980, vol. 21, p. 2682
Related resource: http://dx.doi.org/10.1063/1.524369
URI: http://hdl.handle.net/2445/24513
ISSN: 0022-2488
Appears in Collections:Articles publicats en revistes (Física Quàntica i Astrofísica)

Files in This Item:
File Description SizeFormat 
4846.pdf254.62 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.