Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/24569
Title: Dirac and reduced quantization: A Lagrangian approach and Application to Coset Spaces
Author: Ordóñez, C. R.
Pons Ràfols, Josep Maria
Keywords: Teoria de grups
Camps de galga (Física)
Teoria quàntica
Group theory
Gauge fields (Physics)
Quantum theory
Issue Date: 1995
Publisher: American Institute of Physics
Abstract: A Lagrangian treatment of the quantization of first class Hamiltonian systems with constraints and Hamiltonian linear and quadratic in the momenta, respectively, is performed. The first reduce and then quantize and the first quantize and then reduce (Diracs) methods are compared. A source of ambiguities in this latter approach is pointed out and its relevance on issues concerning self-consistency and equivalence with the first reduce method is emphasized. One of the main results is the relation between the propagator obtained la Dirac and the propagator in the full space. As an application of the formalism developed, quantization on coset spaces of compact Lie groups is presented. In this case it is shown that a natural selection of a Dirac quantization allows for full self-consistency and equivalence. Finally, the specific case of the propagator on a two-dimensional sphere S2 viewed as the coset space SU(2)/U(1) is worked out. 1995 American Institute of Physics.
Note: Reproducció del document proporcionada per AIP i http://dx.doi.org/10.1063/1.531111
It is part of: Journal of Mathematical Physics, 1995, vol. 1146
Related resource: http://dx.doi.org/10.1063/1.531111
URI: http://hdl.handle.net/2445/24569
ISSN: 0022-2488
Appears in Collections:Articles publicats en revistes (Física Quàntica i Astrofísica)

Files in This Item:
File Description SizeFormat 
95276.pdf1.28 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.