Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/44185
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFryer, Helen R.-
dc.contributor.authorFrater, John-
dc.contributor.authorDuda, Anna-
dc.contributor.authorRoberts, Mick G.-
dc.contributor.authorSPARTAC Trial Investigators-
dc.contributor.authorPhillips, Rodney E.-
dc.contributor.authorMcLean, Angela R.-
dc.contributor.authorMiró Meda, José M.-
dc.date.accessioned2013-06-12T12:02:12Z-
dc.date.available2013-06-12T12:02:12Z-
dc.date.issued2010-11-18-
dc.identifier.issn1553-7366-
dc.identifier.urihttp://hdl.handle.net/2445/44185-
dc.description.abstractDuring infection with human immunodeficiency virus (HIV), immune pressure from cytotoxic T-lymphocytes (CTLs) selects for viral mutants that confer escape from CTL recognition. These escape variants can be transmitted between individuals where, depending upon their cost to viral fitness and the CTL responses made by the recipient, they may revert. The rates of within-host evolution and their concordant impact upon the rate of spread of escape mutants at the population level are uncertain. Here we present a mathematical model of within-host evolution of escape mutants, transmission of these variants between hosts and subsequent reversion in new hosts. The model is an extension of the well-known SI model of disease transmission and includes three further parameters that describe host immunogenetic heterogeneity and rates of within host viral evolution. We use the model to explain why some escape mutants appear to have stable prevalence whilst others are spreading through the population. Further, we use it to compare diverse datasets on CTL escape, highlighting where different sources agree or disagree on within-host evolutionary rates. The several dozen CTL epitopes we survey from HIV-1 gag, RT and nef reveal a relatively sedate rate of evolution with average rates of escape measured in years and reversion in decades. For many epitopes in HIV, occasional rapid within-host evolution is not reflected in fast evolution at the population level.-
dc.format.extent12 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherPublic Library of Science (PLoS)-
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1371/journal.ppat.1001196-
dc.relation.ispartofPLoS Pathogens, 2010, vol. 6, num. 11, p. e1001196-
dc.relation.urihttp://dx.doi.org/10.1371/journal.ppat.1001196-
dc.rightscc-by (c) Fryer, H.R. et al., 2010-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es-
dc.sourceArticles publicats en revistes (Medicina)-
dc.subject.classificationCèl·lules T-
dc.subject.classificationVIH (Virus)-
dc.subject.otherT cells-
dc.subject.otherHIV (Viruses)-
dc.titleModelling the evolution and spread of HIV immune escape mutants.eng
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec610218-
dc.date.updated2013-06-12T10:57:54Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid21124991-
Appears in Collections:Articles publicats en revistes (Medicina)

Files in This Item:
File Description SizeFormat 
610218.pdf724.82 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons